Chứng minh :
\(\frac{n}{n+1}\)là phân số tối giản ( \(n\in Z\), \(n\ne0\))
BÀI TẬP: Chứng minh phân số\(\frac{n}{n+1}\)tối giản \(\left(n\in N;n\ne0\right)\)
Gọi d là ƯCLN của (n;n+1)
\(\Rightarrow\)n chia hết cho d; (n+1) chia hết cho d
\(\Rightarrow\)(n+1) - n chia hết cho d
\(\Rightarrow\)1 chia hết cho d
\(\Rightarrow d\in\){1;-1}
Vậy \(\frac{n}{n+1}\)là phân số tối giản
gọi d là ƯCLN{n;n+1}
ta có: n chia hết ; n+1 chia hết cho d (1)
=> n+1-n chia hết cho d
=> 1 chia hết cho d (2)
từ (1) và(2)=> d= +1 và -1
vậy \(\frac{n}{n+1}\)là phân số tối giản
Gọi d là ƯCLN(n;n+1)
=>n chia hết cho d;(n+1) chia hết cho d
=>(n+1)-n chia hết cho d
=>1 chia hết cho d
=>d thuộc {1;-1}
Vậy \(\frac{n}{n+1}\)là phân số tối giản
Chứng minh:
\(\frac{n}{n+1}\)là Phân số tối giản\(\left(n\in N;n\ne0\right)\)
Gọi d là ƯC(n;n+1)
Khi đó: n chia hết co d n+1 chia hết cho d
=> (n+1)-n chia hết cho d
=> 1 chia hết cho d
=> d=1
Vậy n/n+1 là phân số tối giản
Giúp mình với các bạn ơi!
Bài 1: Rút gọn phân số:
a) \(\frac{17.5-17}{3-20}\)
b) \(\frac{49+7.49}{98}\)
c*) \(\frac{7}{9.10^2-2.10^2}\)
Bài 2*:
a) Chứng minh: M = \(\frac{n-1}{n-2}\)\(\left(n\in Z;n\ne2\right)\)là phân số tối giản.
b) Chứng minh: M= \(\frac{2n+1}{n}\)\(\left(n\in Z;n\ne0\right)\)là phân số tối giản.
Khi nào \(\frac{n}{n+1}\)là phân số tối giản? Biết \(n\in N;n\ne0\)
Gọi UCLN(n,n+1)=d
=> n và n+1 chia hết cho d
=>(n+1)-n chia hết cho d
=> 1 chia hết cho d
=>d=1 hoặc -1
=> (n,n+1)=1(hay nguyên tố cùng nhau)
=> n/(n+1) luôn tối giản vs mọi n thuộc N, n khác 0 và khác -1(để mẫu khác 0 thì phân thức đc xác định);
Vậy....mọi n với...
Gọi d = ƯC( n , n + 1 )
Xét hiệu :
\(n-n-1⋮d\)
\(1⋮d\)
\(\Rightarrow d=1,d=-1\)
\(\Rightarrow\frac{n}{n+1}\)tối giản
Chứng minh \(\frac{12n+1}{30n+2}\)là phân số tối giản \(( n \in Z)\)
Gọi d là ƯCLN của 12n + 1 và 30n + 2
12n + 1 chia hết cho d ; 30n + 2 chia hết cho d
=> 5 ( 12n + 1 ) chia hết cho d ; 2 ( 30n + 2 ) chia hết cho d
=> 60n + 5 chia hết cho d ; 60n + 4 chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> Đpcm
Đặt \(\left(12n+1;30n+2\right)=d\)\(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5.\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\)\(\Rightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi ƯCLN(12n + 1 ; 30n + 2) = d
=> \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\Rightarrow60n+5-\left(60n+4\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
=> 12n + 1 ; 30n + 2 là 2 số nguyên tố cùng nhau
=> 12n + 1/30n + 2 là phân số tối giản
Chứng minh rằng:\(\frac{n+5}{n+4}\)là phân số tối giản.(n thuộc Z;n khác 4)
Để CM \(\frac{n+5}{n+4}\) là phân số tối giản thì ta cần chứng minh n + 5 và n + 4 là nguyên tố cùng nhau
Gọi d là ước chung lớn nhất của n + 5 và n + 4
=> n + 5 và n + 4 chia hết cho d
=> (n + 5) - (n + 4) chia hết cho d
=> 1 chia hết cho d => d = 1
Vì ước chung lớn nhất của n + 5 và n + 4 là 1 => n + 5 và n + 4 là nguyên tố cùng nhau
=> \(\frac{n+5}{n+4}\) là phân số tối giản (đpcm)
Chứng minh M = n-1/ n-2 (n ϵ Z; n ≠ 2) là phân số tối giản.
a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản
a) Tìm a để \(\frac{a}{74}\)là phân số tối giản
b) Chứng minh\(\frac{3n}{3n+1}\)là phân số tối giản (\(n\in N\))
a) Hướng dẫn: Đầu tiên chỉ cần phân tích ước của 74. Vậy để \(\frac{a}{74}\)tối giản thì a \(\ne\)Ư(74) hay a \(\ne\)B[(Ư)74]
b) Gọi d là ước chung lớn nhất của 3n và 3n+1
=> 3n \(⋮\)d
Và: 3n+1 \(⋮\)d
=> (3n+1)-3n \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư(1)
=> d \(\in\){ 1}
Vậy \(\frac{3n}{3n+1}\)là phân số tối giản
Duyệt đi, chúc bạn học giỏi!