Cho 3 số a,b,c thỏa mãn a2+b2+ab+ac+bc <0 . cmr
a2+b2<c2
bài 1: Cho các số thực a, b, c thỏa mãn a+b−2c=0 và a2+b2−ca−cb=0.Chứng minh rằng a = b = c.
bài 2: Giả sử a, b là hai số thực phân biệt thỏa mãn a2+4a=b2+4b=1.
a) Chứng minh rằng a + b = −4.
b) Chứng minh rằng a3 + b3 = −76.
c) Chứng minh rằng a4 + b4 = 322.
Bài 1:
Ta có: a + b - 2c = 0
⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:
(2c − b)2 + b2 + (2c − b).b − 3c2 = 0
⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0
⇔ b2 − 2bc + c2 = 0
⇔ (b − c)2 = 0
⇔ b − c = 0
⇔ b = c
⇒ a + c − 2c = 0
⇔ a − c = 0
⇔ a = c
⇒ a = b = c
Vậy a = b = c
Cho hai số dương a, b thỏa mãn a 2 + b 2 = 7 a b . Đẳng thức nào sau đây đúng?
A. log 7 a + b 2 = log 7 a + log 7 b 2
B. log 7 a + b 3 = log 7 a + log 7 b 2
C. log 7 a + b 3 = log 7 a + log 7 b 3
D. log 7 a + b 7 = log 7 a + log 7 b 7
cho ba số a;b;c thỏa mãn a+b+c=0 và -1<a≤b≤c<1a≤b≤c<1CMR a2+b2+c2<2
cho 3 số a, b , c ko âm thỏa mãn :a+b=1-ab,b+c=3-bc, c+a=7-ac . tính S=a^2019+b^2019+c^2019
cho 3 số a, b , c ko âm thỏa mãn :a+b=1-ab,b+c=3-bc, c+a=7-ac . tính S=a^2019+b^2019+c^2019
giúp mink với
Vì a+b=1-ab nên a=0 và b=1 hoặc b=0 và a=1
TH1:
Nếu a=0 và b=1 thì trong biểu thức b+c=3-bc \(c\in\varnothing\)
=> Trường hợp này không thỏa mãn đề bài
TH2:
Nếu a=1 và b=0 thì trong biểu thức b+c=3-bc c=3 vì 0+3=3-0*3=3
Vậy a=1;b=0;c=3
=>S=a^2019+b^2019+c^2019
S=1^2019+0^2019+3^2019
S=1+0+3^2019
S=1+3^2019
Còn lại anh tự tính nhé, em chịu.
Với lại em mới lớp 6 thôi nên nếu em sai anh đừng ném đá em. Em cảm ơn anh!
cho 3 số a, b , c ko âm thỏa mãn :a+b=1-ab,b+c=3-bc, c+a=7-ac . tính S=a^2019+b^2019+c^2019
giúp mink với
a + b + c = a^3 + b^3 + c^3 = 1
<=> (a + b + c)^3 = a^3 + b^3 + c^3 = 1
<=> a^3 + b^3 + c^3 + 3(a + b)(b + c)(c + a) = a^3 + b^3 + c^3
=> 3(a + b)(b + c)(c + a) = 0
=> a + b = 0 hoặc b + c = 0 hoặc c + a = 0
+ Nếu a + b = 0 => a = -b
Thay a + b = 0 vào đề => c = 1
P = a^2017 + b^2017 + c^2017 = a^2017 + (-a)^2017 + 1^2017 = 1
Tương tự với 2 trường hợp còn lại ta cũng được P = 1
Cho a, b, c là các số thực dương thỏa mãn 2(a2 +b2 +c2) = a+b+c+3. Chứng minh rằng:
\(\dfrac{1}{\sqrt{a^4+a^2+1}}\)+ \(\dfrac{1}{\sqrt{b^4+b^2+1}}\)+ \(\dfrac{1}{\sqrt{c^4+c^2+1}}\) \(\ge\sqrt{3}\)
mng giúp mình nhé, cảm ơnn
cho a,b,c thuộc Z thỏa mãn ab-ac+bc-c^2=-1 chứng minh rằng a,b là 2 số đối nhau
các bạn giải giúp mình nhé thanks
cho các số nguyên a, b, c thỏa mãn ab - ac + bc - c^2 = -1. Tính a/b
ab-ac+bc-c2=b(a+c)-c(a+c)=(b-c)(a+c)
=>\(\orbr{\begin{cases}b=c+1,a=-1-c\\b=c-1,a=1-c\end{cases}}\)
\(\Leftrightarrow\frac{a}{b}=-1\)
1.Tìm tất cả các số nguyên dương n thoả mãn 4n4+1 là số nguyên tố
2.Cho 4 số nguyên dương a,b,c,d thoả mãn điều kiện ad= b2-bc+c2.Chứng minh rằng a2 +4b2+4c2+16d2 là hợp số
Ta có
n4 + 4 = n4 + 4n2 + 4 – 4n2
= (n2 + 2 )2 – (2n)2
= (n2 + 2 – 2n )(n2 + 2 + 2n)
Vì n4 + 4 là số nguyên tố nên n2 + 2 – 2n = 1 hoặc n2 + 2 + 2n = 1
Mà n2 + 2 + 2n > 1 vậy n2 + 2 – 2n = 1 suy ra n = 1
Thử lại : n = 1 thì 14 + 4 = 5 là số nguyên tố
Vậy với n = 1 thì n4 + 4 là số nguyên tố.