Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Ngọc Duy
Xem chi tiết
Thiên Thiên Chanyeol
20 tháng 12 2017 lúc 13:10

\(\hept{\begin{cases}\sqrt[3]{2y+24}+\sqrt{12-x}=6\left(1\right)\\x^3+2xy^2+X-2yx^2-4y^3-2y=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)ĐK:\(x\le12\)

Đặt \(u=\sqrt[3]{2y+24}\)\(\Rightarrow u^3=2y+24\)

\(v=\sqrt{12-x}\) \(\Rightarrow v^2=12-x\)

Ta có hệ  phương trình :\(\hept{\begin{cases}u+v=6\\u^3+v^2=2y-x+36\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+\left(6-u\right)^2=2y-x+36\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+u^2+36-12u=2y+x+36\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+u^2-12u=2y+x\end{cases}}\)

Nguyen Thi Phuong Anh
19 tháng 12 2017 lúc 23:08

lop may vay

Xem chi tiết
Thảo
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 12 2021 lúc 20:50

\(ĐK:x\le12\\ PT\Leftrightarrow\left(\sqrt[3]{x+24}-3\right)+\left(\sqrt{12-x}-3\right)=0\\ \Leftrightarrow\dfrac{x-3}{\sqrt[3]{\left(x+24\right)^2}+3\sqrt[3]{x+24}+9}-\dfrac{x-3}{\sqrt{12-x}+3}=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\\dfrac{1}{\sqrt[3]{\left(x+24\right)^2}+3\sqrt[3]{x+24}+9}=\dfrac{1}{\sqrt{12-x}+3}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt[3]{\left(x+24\right)^2}+3\sqrt[3]{x+24}+9=\sqrt{12-x}+3\\ \Leftrightarrow\sqrt[3]{x+24}\left(\sqrt[3]{x+24}+3\right)+6-\sqrt{12-x}=0\\ \Leftrightarrow\dfrac{\left(x+24\right)\left(\sqrt[3]{x+24}+3\right)}{\sqrt[3]{\left(x+24\right)^2}}+\dfrac{x+24}{6+\sqrt{12-x}}=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-24\left(tm\right)\\\dfrac{\sqrt[3]{x+24}+3}{\sqrt[3]{\left(x+24\right)^2}}=\dfrac{-1}{6+\sqrt{12-x}}\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\dfrac{\sqrt[3]{x+24}+3}{\sqrt[3]{x+24}}+\dfrac{1}{\sqrt[3]{x+24}}+\dfrac{1}{6+\sqrt{12-x}}-\dfrac{1}{\sqrt[3]{x+24}}=0\\ \Leftrightarrow\dfrac{\sqrt[3]{x+24}+4}{\sqrt[3]{x+24}}+\dfrac{\sqrt[3]{x+24}+4-10-\sqrt{12-x}}{\sqrt[3]{x+24}\left(6+\sqrt{12-x}\right)}=0\\ \Leftrightarrow\dfrac{x+88}{\sqrt[3]{x+24}\left(\sqrt[3]{\left(x+24\right)^2}-4\sqrt[3]{x+24}+16\right)}+\dfrac{\sqrt[3]{x+24}+4-10-\sqrt{12-x}}{\sqrt[3]{x+24}\left(6+\sqrt{12-x}\right)}=0\)

Xét \(\sqrt[3]{x+24}+4-10-\sqrt{12-x}=\dfrac{x+88}{\sqrt[3]{\left(x+24\right)^2}-4\sqrt[3]{x+24}+16}-\dfrac{x+88}{10+\sqrt{12-x}}=0\)

\(=\left(x+88\right)\left(\dfrac{1}{\sqrt[3]{\left(x+24\right)^2}-4\sqrt[3]{x+24}+16}-\dfrac{1}{10+\sqrt{12-x}}\right)\)

Thay vào PT (2) ta đặt đc nhân tử chung là \(x+88\)

Và ngoặc lớn còn lại vô nghiệm

\(\Leftrightarrow x+88=0\Leftrightarrow x=-88\left(tm\right)\)

Vậy PT có nghiệm \(x\in\left\{-88;-24;3\right\}\)

P/s mình thấy giải theo PP đặt ẩn phụ dễ hơn á ;-;

Xem chi tiết
Yeutoanhoc
28 tháng 6 2021 lúc 8:32

Lag tí -.-'

`ĐK:2<=x<=6`

BP 2 vế ta có:

`x-2+6-x+2\sqrt{(x-2)(6-x)}=x^2-8x+24`

`<=>4+2\sqrt{(x-2)(6-x)}=x^2-8x+24`

`<=>2\sqrt{(x-2)(6-x)}=x^2-8x+20`

`<=>2sqrt{-x^2+8x-12}=x^2-8x+20`

`<=>-x^2+8x-20+2sqrt{-x^2+8x-12}=0`

`<=>-x^2+8x-12+2sqrt{-x^2+8x-12}-8=0`

Đặt `sqrt{-x^2+8x-12}=a(a>=0)`

`pt<=>a^2+2a-8=0`

`<=>a=2(tm),a=-4(l)`

`<=>-x^2+8x-12=4`

`<=>x^2-8x+16=0`

`<=>(x-4)^2=0<=>x=4(tmđk)`

Vậy `S={4}`

_little rays of sunshine...
Xem chi tiết
Nguyễn thành Đạt
13 tháng 9 2023 lúc 22:11

\(\sqrt{x-2}+\sqrt{6-x}\text{=}\sqrt{x^2-8x+24}\)

\(ĐKXĐ:2\le x\le6\)

Xét VP của pt ta thấy : \(\sqrt{x^2-8x+24}\text{=}\sqrt{x^2-8x+16+8}\)

\(\text{=}\sqrt{\left(x-4\right)^2+8}\)

\(\Rightarrow VP\ge\sqrt{8}\)

Xét VT của pt ta có :

\(VT^2\text{=}x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

\(VT^2\text{=}4+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

Áp dụng BĐT cô si cho 2 số không âm ta có :

\(2\sqrt{\left(x-2\right)\left(6-x\right)}\le\left(\sqrt{x-2}\right)^2+\left(\sqrt{6-x}\right)^2\)

\(\text{=}x-2+6-x\text{=}4\)

\(\Rightarrow VT^2\le8\)

\(\Rightarrow VT\le\sqrt{8}\)

Để \(VT\text{=}VP\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4\text{=}0\\\sqrt{x-2}\text{=}\sqrt{6-x}\end{matrix}\right.\)

\(\Leftrightarrow x=4\left(TM\right)\)

Vậy...........

M'hyun Choi
Xem chi tiết
Sơn Nguyễn
1 tháng 2 2020 lúc 18:04

\(\sqrt{12-x}-3+\sqrt[3]{x+24}-3=0\)

Liên hợp sẽ có:

\(\frac{3-x}{\sqrt{12-x}+3}+\frac{x-3}{\sqrt[3]{x+24}+3}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt[3]{x+24}+3}-\frac{1}{\sqrt{12-x}+3}\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-3=0\\\left(\frac{1}{\sqrt[3]{x+24}+3}-\frac{1}{\sqrt{12-x}+3}\right)=0\end{cases}}\)

\(\Rightarrow x=3\)

Khách vãng lai đã xóa
Sơn Nguyễn
1 tháng 2 2020 lúc 18:05

Xin dấu k nha

Khách vãng lai đã xóa
Trang Nguyễn
Xem chi tiết
Lấp La Lấp Lánh
10 tháng 10 2021 lúc 18:48

\(\sqrt{x-3}+\sqrt{4x-12}=6\left(đk:x\ge3\right)\)

\(\Leftrightarrow\sqrt{x-3}+2\sqrt{x-3}=6\)

\(\Leftrightarrow3\sqrt{x-3}=6\Leftrightarrow\sqrt{x-3}=2\)

\(\Leftrightarrow x-3=4\Leftrightarrow x=7\left(tm\right)\)

Nguyễn Huy Tú
10 tháng 10 2021 lúc 18:49

\(\sqrt{x-3}+\sqrt{4x-12}=6\)đk : x >= 3 

\(\Leftrightarrow\sqrt{x-3}+2\sqrt{x-3}=6\Leftrightarrow3\sqrt{x-3}=6\Leftrightarrow\sqrt{x-3}=2\)

\(\Leftrightarrow x-3=4\Leftrightarrow x=7\)

vung nguyen thi
Xem chi tiết
Dương Thị Minh
22 tháng 11 2017 lúc 20:51

ĐK: \(-24\le x\le12\)

Đặt : \(\left\{{}\begin{matrix}a=\sqrt[3]{x+24}\\b=\sqrt{12-x}\end{matrix}\right.\Rightarrow a^3+b^2=36}\)Từ cách đặt => pt trở thành a+b=6

=> Hệ :\(\left\{{}\begin{matrix}a+b=6\\a^3+b^2=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a-6\\a^3+a^2-12a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a-6\\a\left(a^2+a-12\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a-6\\\left[{}\begin{matrix}a=0\\a=3\\a=-4\end{matrix}\right.\end{matrix}\right.\)Xong tìm ra b => thay vào cách đặt tìm ra x,y

Nhan Thanh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:44

1.

ĐKXĐ: \(x< 5\)

\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)

\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)

\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)

\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:46

b.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=2\)

Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:49

3.

ĐKXĐ: \(x\ge-1\)

\(x^2+x-12+12\left(\sqrt{x+1}-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\dfrac{12\left(x-3\right)}{\sqrt{x+1}+2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4+\dfrac{12}{\sqrt{x+1}+2}\right)=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Bla bla bla
Xem chi tiết
Minh Hiếu
20 tháng 11 2023 lúc 9:49

\(\sqrt{24+8\sqrt{9-x^2}}=x+2\sqrt{3-x}+4\) \(\left(Đk:-3\le x\le3\right)\)

\(\sqrt{4\left(x+3\right)+8\sqrt{9-x^2}+4\left(3-x\right)}=x+2\sqrt{3-x}+4\)

\(\sqrt{\left(2\sqrt{x+3}+2\sqrt{3-x}\right)^2}=x+2\sqrt{3-x}+4\)

\(2\sqrt{x+3}+2\sqrt{3-x}=x+2\sqrt{3-x}+4\)

\(2\sqrt{x+3}=x+4\)

\(4\left(x+3\right)=x^2+8x+14\)

\(x^2+4x+2=0\)

\(\Delta=16-8=8\)

\(\Delta>0\)=> phương trình có 2 nghiệm phân biệt

\(\left[{}\begin{matrix}x=\dfrac{-4+2\sqrt{2}}{2}=-2+\sqrt{2}\\x=\dfrac{-4-2\sqrt{2}}{2}=-2-\sqrt{2}\end{matrix}\right.\)