\(\frac{2x}{5}=\frac{-24}{10}\)\(\frac{x}{4}=\frac{21}{28}\)
Tìm x, biết
a) \(\frac{x}{4}\)= \(\frac{21}{28}\)
b) \(\frac{2x}{5}\)= \(\frac{-24}{10}\)
a)\(\frac{x}{4}=\frac{21}{28}\)
x . 28 = 4.21
x.28 = 84
x = 84:28
x = 3
Vậy x = 3
b)\(\frac{2x}{5}=\frac{-24}{10}\)
2x.10=5.(-24)
2x.10= -120
2x = -120 :10
2x= -12
x= -12 : 2
x= -6
Vậy x = -6
a,\(\frac{x}{4}\)=\(\frac{21}{28}\)
\(\Leftrightarrow\)28x=21.4
\(\Leftrightarrow\)28x=84
\(\Leftrightarrow\)x=3
Vậy x=3
b, \(\frac{2x}{5}\)=\(\frac{-24}{10}\)
\(\Leftrightarrow\)2x.10=-24.5
\(\Leftrightarrow\)20x=-120
\(\Leftrightarrow\)x=-6
Vậy x=-6
Chúc bn hk tốt
a, \(\frac{x}{4}\)= \(\frac{21}{28}\)
b, \(\frac{2x}{5}\)= \(\frac{-24}{10}\)
tìm x, nhanh giùm mik nha
ai nhanh nhất đúng nhất thì mik tick
a) \(\frac{x}{4}=\frac{21}{28}\Rightarrow\frac{x}{4}=\frac{3}{4}\Rightarrow x=3\)
Vậy x = 3
b) \(\frac{2x}{5}=\frac{-24}{10}\Rightarrow\frac{2x}{5}=\frac{-12}{5}\Rightarrow2x=-12\Rightarrow x=-6\)
Vậy x = -6
\(a)\frac{x}{4}=\frac{21}{28}\)
\(\Rightarrow x\cdot28=4\cdot21\)
\(\Rightarrow x\cdot28=84\)
\(\Rightarrow x=3\)
\(b)\frac{2x}{5}=\frac{-24}{10}\)
Rút gọn : \(\frac{2x}{5}=\frac{-12}{5}\)
\(\Rightarrow2x=-12\)
\(\Rightarrow x=(-12)\div2=-6\)
a, \(\frac{x}{4}=\frac{21}{28}\)
Ta có : x . 28 = 4. 21
x = \(\frac{21.4}{28}\)
x = 3
b, \(\frac{2x}{5}=\frac{-24}{10}\)
Ta có : 2x . 10 = 5 . (-24)
2x = \(\frac{5.\left(-24\right)}{10}\)
2x = -12
x = -12 : 2
x = -6
a,\(\left(\frac{136}{15}-\frac{28}{5}+\frac{62}{10}\right)\frac{21}{24}\)
Tìm x , y , z
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x + y - 2z = 28
b) \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y - z = 186
b. Câu hỏi của Nguyen Hai Bang - Toán lớp 7 - Học toán với OnlineMath
(\(\frac{136}{15}-\frac{28}{5}+\frac{62}{10}\)) .\(\frac{21}{24}\)
\(\left(\frac{136}{15}-\frac{28}{5}+\frac{62}{10}\right)\cdot\frac{21}{24}\)
=
\(=\left(\frac{272}{30}+-\frac{168}{30}+\frac{186}{30}\right).\frac{7}{8}\)\(=\frac{29}{3}.\frac{7}{8}=\frac{203}{24}\)
Tính nhanh :
\(\left(\frac{136}{15}-\frac{28}{5}+\frac{62}{10}\right).\frac{21}{24}\)
\(\left(\frac{136}{15}-\frac{28}{5}+\frac{62}{10}\right).\frac{21}{24}\)
\(=\left(\frac{136}{15}-\frac{28}{5}+\frac{31}{5}\right).\frac{21}{24}\)
\(=\left[\frac{136}{15}-\left(\frac{28}{5}-\frac{31}{5}\right)\right].\frac{21}{24}\)
\(=\left(\frac{136}{15}+\frac{3}{5}\right).\frac{21}{24}\)
\(=\frac{29}{3}.\frac{21}{24}\)
\(=\frac{203}{24}\)
Study well ! >_<
Tìm x,y,z biết :
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5 x + y - 2z = 28
b)\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y -z = 125
c)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z = 49
d) \(\frac{x}{2}=\frac{y}{3}\)và xy = 54
\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{x}{10}=2\Rightarrow x=10.2=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=21.2=42\)
\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)
\(\Rightarrow ab=2k.3k=6k^2=54\)
\(\Rightarrow k^2=9\Leftrightarrow k=3\)
\(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{3}=3\Rightarrow y=9\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x = 20; y = 12; z = 42
b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)
=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)
Vậy ...
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{2x}{30}=\frac{3y}{60};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3y}{60}=\frac{z}{28}\)
\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau:
đến đây dễ rồi bạn tự lm tiếp nhé
c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng dãy tỉ số bằng nhau:
.............
d) Ta có:
\(xy=54\Rightarrow x=\frac{54}{y}\)
\(\frac{x}{2}=\frac{\frac{54}{y}}{2}=54.\frac{2}{y}=\frac{108}{y}\)
Ta lại có:\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{108}{y}=\frac{y}{3}\Rightarrow y^2=324\Leftrightarrow y=18\)
thay vào \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2}=\frac{18}{3}\Leftrightarrow x=12\)
Vậy.....
Tìm x , y , z biet :
a ) x - 10 = y : 6 = \(\frac{2}{24}\) và 2x + y - 2z = 28
b ) \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(\frac{2x}{2y}+2=116\)
c ) \(\frac{1+2y}{18}=\frac{14y}{24}=\frac{16y}{6}\)
Bài 1: Tìm x,y,z biết rằng.
a)\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2z=28
b)\(\frac{x}{3}=\frac{y}{4},\frac{y}{5}=\frac{z}{7}va\)2x+3y-z=124
c)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x+y+z