Vẽ đồ thị hàm số
y=\(\hept{\begin{cases}2x;x\ge0\\x;x< 0\end{cases}}\)
vẽ hàm số đồ thị y=\(\hept{\begin{cases}2x;x>hoặc=0\\x;x< 0\end{cases}}\)
vẽ đồ thị hàm số
y=\(\hept{\begin{cases}x^2+2x,x>=0\\-x^2+2x,x< 0\end{cases}}\)
Vẽ đồ thị các hàm số :
a ) \(y=\hept{\begin{cases}2x\forall x\ge0\\x\forall x< 0\end{cases}}\)
b ) \(y=\hept{\begin{cases}2x\forall x\ge0\\-\frac{1}{2}x\forall x< 0\end{cases}}\)
lập bảng biến thiên của hàm số \(y=\hept{\begin{cases}2x+1\left(x\ge0\right)\\-x^2\left(x< 0\right)\end{cases}}\)và vẽ đồ thị hàm số
Cho hàm số f=\(\hept{\begin{cases}2x;x\ge0\\\frac{-1}{2}x;x< 0\end{cases}}\)
Vẽ đồ thị hàm số khi xác định 2 điểm A;B
Chứng minh tam giác OAB vuông tại O
Vẽ đồ thị hàm số :
\(y=\begin{cases}2x;x\ge0\\x;x< 0\end{cases}\)
Vẽ đồ thị hàm số:
\(y=\hept{\begin{cases}2x\left(x\ge0\right)\\-\frac{1}{2}\left(-2< x< 0\right)\\1\left(x\le-2\right)\end{cases}}\)
CÁC BẠN NHỚ GHI CẢ CÁCH VẼ NHA! CẢM ƠN
CÁC BẠN LÀM NHANH GIÚP MÌNH VỚI MAI MÌNH KIỂM TRA RỒI !
Tìm tập xác định, lập bảng biến thiên của hàm số
\(y=f\left(x\right)=\hept{\begin{cases}x+1\\-2x+4\\2x-4\end{cases}}\)
a)\(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)
b)\(\hept{\begin{cases}2x+5y=8\\2x-3y=0\end{cases}}\)
c)\(\hept{\begin{cases}4x+3y=6\\2x+y=4\end{cases}}\)
d)\(\hept{\begin{cases}2x+3y=-2\\3x-2y=-3\end{cases}}\)
e)\(\hept{\begin{cases}0.3x+05y=3\\1.5x-2y=1.5\end{cases}}\)
giải phương trình bằng phương pháp cộng nha m.n
\(a,\)\(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)\(\Rightarrow3x+y+2x-y=3+7\)\(\Rightarrow5x=10\Rightarrow x=2\)
Mà \(3x+y=3\Rightarrow3.2+y=3\Rightarrow y=3-6=-3\)
Vậy \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)
\(b,\hept{\begin{cases}2x+5y=8\\2x-3y=0\end{cases}}\)\(\Rightarrow2x+5y-\left(2x-3y\right)=8-0\)
\(\Rightarrow2x+5y-2x+3y=8\)\(\Rightarrow8y=8\Rightarrow y=1\)
Mà \(2x+5y=8\Rightarrow2x+5=8\Rightarrow2x=\frac{8-5}{2}=\frac{3}{2}\)
Vậy \(\hept{\begin{cases}x=\frac{3}{2}\\y=1\end{cases}}\)
\(c,\hept{\begin{cases}4x+3y=6\\2x+y=4\end{cases}\Rightarrow\hept{\begin{cases}4x+3y=6\\4x+2y=8\end{cases}}}\)
\(\Rightarrow4x+3y-\left(4x+2y\right)=6-8\)
\(\Rightarrow4x+3y-4x-2y=-2\)
\(\Rightarrow y=-2\)
Mà \(4x+3y=6\Rightarrow4x-6=6\Rightarrow4x=12\Leftrightarrow x=3\)
Vậy \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
Làm tương tự nha cậu
làm cả hai phương pháp cho nó máu :D
a, C1 : \(\hept{\begin{cases}3x+y=3\left(1\right)\\2x-y=7\left(2\right)\end{cases}}\)
Lấy pt 1 cộng pt 2 có : \(3x+y+2x-y=3+7\)
\(< =>5x=10< =>x=2\)
Thay vào pt 2 có : \(2x-y=7\)
\(< =>4-y=7< =>y=-3\)
Vậy ...
C2: \(\hept{\begin{cases}3x+y=3\left(1\right)\\2x-y=7\left(2\right)\end{cases}}\)
\(< =>\hept{\begin{cases}y=3-3x\\2x-\left(3-3x\right)=7\end{cases}}\)
\(< =>2x-3+3x=7\)
\(< =>5x=10< =>x=2\)
Thay vào pt 2 có : \(2x-y=7\)
\(< =>4-y=7< =>y=-3\)
Vậy ...