Tính :B=\(4.\left(\frac{-1}{2}\right)^3-2.\left(\frac{-1}{2}\right)^2+3.\left(\frac{-1}{2}\right)+1\)
\(\frac{\left(1^2+\frac{1}{4}\right)\left(3^2+\frac{1}{4}\right)\left(5^2+\frac{1}{4}\right)..........\left(29^2+\frac{1}{4}\right)}{\left(2^2+\frac{1}{4}\right)\left(4^2+\frac{1}{4}\right)\left(6^2+\frac{1}{4}\right)...........\left(30^2+\frac{1}{4}\right)}\)
tính giá trị biểu thức trên
Tính \(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+\text{4}\right)+...+\frac{1}{2016}\left(1+2+...+2016\right)\)
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+2016\right)\)
\(A=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+\frac{1}{4}.\frac{\left(1+4\right).4}{2}+...+\frac{1}{16}.\frac{\left(1+16\right).16}{2}\)
\(A=1+\frac{1}{2}.\frac{3.2}{2}+\frac{1}{3}.\frac{4.3}{2}+\frac{1}{4}.\frac{5.4}{2}+...+\frac{1}{16}.\frac{17.16}{2}\)
\(A=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)
\(A=\frac{1}{2}.\left(2+3+4+5+...+17\right)\)
\(A=\frac{1}{2}.\frac{\left(2+17\right).16}{2}=19.4=76\)
Tính giá trị của biểu thức:
\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009.2011}\)
\(C=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1000}\right)\)
\(S=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
\(B=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{100}\right)\)
\(D=\left(1-\frac{1}{17}\right)\left(1-\frac{2}{17}\right)\left(1-\frac{3}{17}\right)...\left(1-\frac{27}{17}\right)\)
\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)
\(\Rightarrow T=\frac{1004}{1005}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\frac{2010}{2011}\)
\(\Rightarrow A=\frac{1005}{2011}\)
\(C=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}\)
\(C=\frac{1.2.3...99}{2.3.4...100}\)
\(\Rightarrow C=\frac{1}{100}\)
Tính:
\(S=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{100}\left(1+2+3+...+100\right)\)
a) Tính \(A=\left(0,25\right)^{-1}.\left(\frac{1}{4}\right)^{-2}.\left(\frac{4}{3}\right)^{-2}.\left(\frac{5}{4}\right)^{-1}.\left(\frac{2}{3}\right)^{-3}\)
b) Tìm só nguyên n,biết :\(^{2^{-1}.2^n+4.2^n=9.2^5}\)
b, \(2^n\left(2^{-1}+4\right)=9\cdot2^5\)
=> \(2^n\cdot\frac{9}{2}=9\cdot2^5\)
=> \(2^n=2^6\)
Vậy \(n=6\left(tm\right)\)
a, \(A=4\cdot16\cdot\frac{9}{16}\cdot\frac{4}{5}\cdot\frac{27}{8}=\frac{486}{5}=97,2\)
a)
\(A=\left(0,25\right)^{-1}\cdot\left(\frac{1}{4}\right)^{-2}\cdot\left(\frac{4}{3}\right)^{-2}\cdot\left(\frac{5}{4}\right)^{-1}\cdot\left(\frac{2}{3}\right)^{-3}\)
\(A=4\cdot16\cdot\frac{9}{16}\cdot\frac{4}{5}\cdot\frac{27}{8}=\frac{4\cdot16\cdot9\cdot4\cdot27}{16\cdot5\cdot8}=\frac{9\cdot2\cdot27}{5}=\frac{486}{5}\)
b)
2-1.2n+4.2n=9.25
(1/2+4).2n=288
2n=288:(1/2+4) =64
=>2n=26
=> n = 6
Tính hợp lý:
\(H=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+...+\frac{1}{84}.\left(1+2+3+...+84\right)\)
Áp dụng tc: \(\frac{1}{n}.\left(1+2+3+...+n\right)=\frac{1}{n}.\frac{n.\left(n+1\right)}{2}=\frac{n+1}{2}\)
=> H = \(\frac{1}{2}.2+\frac{1}{2}.3+\frac{1}{2}.4+...+\frac{1}{2}.85=\frac{1}{2}.\left(2+3+4+...+85\right)\)
= \(\frac{1}{2}.\left(1+2+3+4+...+85-1\right)=\frac{1}{2}.\left(\frac{85.86}{2}-1\right)=\frac{1}{2}.3654=1827\)
Tính bằng cách hợp lí nhất
a) A = \(\frac{\left(1+17\right)\left(1+\frac{17}{2}\right)\left(1+\frac{17}{3}\right)...\left(1+\frac{17}{19}\right)}{\left(1+19\right)\left(1+\frac{19}{2}\right)\left(1+\frac{19}{3}\right)..\left(1+\frac{19}{17}\right)}\)
b) B = \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{99}-1\right)\left(\frac{1}{100}-1\right)\)
Tính:\(I=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right).....\left(1-\frac{1}{10^2}\right)\)
TÍNH NHANH:
\(D=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right).....\left(\frac{1}{100^2}-1\right)\)
\(D=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\cdot...\cdot\left(1-\frac{1}{100^2}\right).\)
\(D=-\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot\frac{4^2-1}{4^2}\cdot...\cdot\frac{100^2-1}{100^2}.\)
\(D=-\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\frac{3\cdot5}{4^2}\cdot\frac{4\cdot6}{5^2}\cdot...\cdot\frac{98\cdot100}{99^2}\cdot\frac{99\cdot101}{100^2}=-\frac{1}{2}\cdot\frac{101}{100}=-\frac{101}{200}\)