Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thị Thanh Hằng
Xem chi tiết

a, A = 1002 - 992 + 982 - 972 +...+ 22 - 12

    A = (1002 - 992) + (982 - 972) +...+ (22 - 1)2

    A = (100 - 99)(100+99) + (98-97)(98+97)+..+(2-1)(2+1)

    A = 1.199 + 1.195 + 1.191 +...+1.3

    A = 3 + ...+191+ 195 + 199

    Dãy số trên là dãy số cách đều với khoảng cách là: 199 -195=4

     Dãy số trên có số hạng là: (199 - 3): 4 + 1 = 50 (số )

        A = (199 +3) \(\times\) 50 : 2 = 5050 

      

Nguyễn Trần Việt Phương
Xem chi tiết
Nguyễn thành Đạt
27 tháng 1 2023 lúc 7:59

\(D=\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(a-b-c\right)\)

\(D=a+b-c-a+b-c+b+c-a-a+b+c\)

\(D=\left(a-a-a-a\right)+\left(b+b+b+b\right)+\left(c+c-c-c\right)\)

\(D=4b-3a\)

Lê Trung Tiến
Xem chi tiết
Nguyễn Ngọc Thảo My
Xem chi tiết
Minh Triều
3 tháng 1 2016 lúc 17:29

 

(a+b-c)+(a-b)-(a-b-c)

=a+b-c+a-b-a+b+c

=(a+a-a)+(b-b+b)+(-c+c)

=a+b

Nguyễn Mạnh Trung
3 tháng 1 2016 lúc 17:29

ai tick mik lên 160 mik tick cho cả đời

Nguyễn Hoàng Anh
3 tháng 1 2016 lúc 17:30

a + b

TÍCK MÌNH NHA

Đỗ Thị Thanh Hằng
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
17 tháng 5 2023 lúc 9:33

`6x^2+9=0`

Vì \(x^2\ge0\text{ }\forall\text{ x}\)

`\rightarrow`\(6x^2+9\ge9>0\text{ }\forall\text{ x}\)

`\rightarrow` Đa thức vô nghiệm.

Hoặc nếu bạn chưa hiểu hay chưa quen với cách trên thì bạn có thể sử dụng cách này:

\(6x^2+9=0\)

\(\rightarrow\text{ }6x^2=0-9\)

\(\rightarrow\text{ }6x^2=-9\)

Mà \(x^2\ge0\text{ }\forall\text{ x}\)

\(\rightarrow\text{ Đa thức vô nghiệm.}\)

(Cách này mình chỉ giải ra cho bạn hiểu thôi á, còn nếu mà chứng minh thì mình nghĩ cách làm thứ nhất của mình mới dùng dc á cậu).

Dùng phương pháp phản chứng em nhé:

Giả sử đa thức P(\(x\)) = 6\(x^2\) + 9, có nghiệm thì sẽ tồn tại giá trị của \(x\) để:

6\(x^2\) + 9 = 0

Mặt khác ta có:  \(x^2\) ≥ 0 ∀ \(x\) ⇒ 6\(x^2\) ≥ 0 ∀ \(x\) ⇒ 6\(x^2\) + 9 > 9 ∀ \(x\)

vậy 6\(x^2\) + 9 = 0 (là sai) hay 

Đa thức: 6\(x^2\) + 9 vô nghiệm (đpcm)

Lê Trung Tiến
Xem chi tiết
Lê Trung Tiến
Xem chi tiết
Lê Trung Tiến
Xem chi tiết
Lê Trung Tiến
Xem chi tiết