cho da thuc f(x)=ax^3+bx^2+cx+d. cmr Neu 19a-13b-c-2d=0 thi f(2).f(-3)<0
cho da thuc f(x)=ax^2+bx+c voi a,b,c la cac so thuc . Biet rang f(0), f(1), f(2) co gia tri nguyen . cmr : 2a, 2b cung co gt nguyen
chof(x)=ax^2+bx+cvoi a b c là các số hữu tỉ thỏa mãn 13a+b+2c=0 cmr f(-2)xf(3),nho hon bang 0
Toan lop 7 ma sao kho the?!!!!! Minh bo tay!
Cho f(x)=ax3+bx2+cx+d. CMR neu 6a, 2b, a+b+c va d la cac so nguyen to thi f(x) co gia tri nguyen voi moi so nguyen x
a. Xac dinh a de nghiem cua da thuc f(x) = 2x-4 cung la nghiem cua da thuc g(x) = x^2 - ax +2b.
b. Cho f(x) = ax^3 + bx^2 + cx + d, trong do a; b; c; d la hang so va thoa man : b = 3a + c
Chung to rang : f(1) = f(-2)
cho da thuc f(x)=ax^2+bx+c.Chung minh rang neu f(x) nhan dc 1va -1 la nghiem thi a va c doi nhau
cho f(x)=ax^3+bx^2+cx+d với a b c d là các số hữu tỉ biết 7a +5b +c + 2d = 0 cm F(-1).F(2) \(\le\) 0
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
cho f(x) =ax*2+bx+c biet f(1) .f(2) .f(0) nguyen .chung minh da thuc f(x) nguyen voi moi x
Bài 1:
cho f(x)=ax^3+bx^2+cx+d và b=3a+c. CMR: f(1),f(-2) ko âm
Do b=3a+c
Ta có:f(1)=a+b+c+d=4a+2c+d
f(-2)=-8a+4b-2c+d=-8a+4.(3a+c)-2c+d=-8a+12a+4c-2c+d=4a+2c+d
=>f(1).f(-2)=(4a+2c+d)2
=>f(1).f(-2) ko âm
Do b=3a+c
ta sẽ có: f(1)=a+b+c+d=4a+2c+d
f(-2)=-8a+4b-2c+d=-8a+4.(3a+c)-2c+d=8a+12a+4c-2c+d=4a+2c+d
=>f(1).f(2)=(4a+2c+d)\(^2\)
=>f(1).f(2) không âm
chúc chị học tốt em mới lớp 6 nhưng có đi học thêm bài này cùng ác anh chị lớp 7 nên giúp chị ạ^^
Cho đa thức f(x)= \(ax^4+bx^3+cx^2+dx+e\)
Biết 5a+c=3b+d. CMR: f(-2).f(1)\(\ge\) 0
Ta có: f(-2)=16a-8b+4c-2d+e
f(1)=a+b+c+d+e(2)
5a+c=3b+d
=>20a+4c=12b+4d
=>f(-2)=12b+4d-8b-2d-4a+e=4b+2d-4a+e
5a+c=3b+d
=>3b-4a=a+c-d
=>f(-2)=a+b+c+d+e(2)
Từ (1) và (2) => f(-2).f(1)=(a+b+c+d+e)2\(\ge0\)với mọi a,b,c,d,e(đpcm)