tim gia tri nho nhat cua bieu thuc P=1/x^2+x+1/y^2+y+1/z^2+z
cho x,y,z la cac so thuc duong thoa man x+y+z=1 tim gia tri nho nhat cua bieu thuc M=1/16x+1/4y+1/z
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
\(M=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)
\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)
\(M\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}\)
\(=\frac{49}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16\left(x+y+z\right)}=\frac{7}{16}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z\ge3\sqrt[3]{xyz}\)
\(\Rightarrow1\ge3\sqrt[3]{xyz}\)
\(\Rightarrow\frac{1}{27}\ge xyz\)
Ta có \(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\)( 1 )
Xét \(3\sqrt[3]{\frac{1}{64xyz}}\)
Ta có \(\frac{1}{27}\ge xyz\)
\(\Rightarrow\frac{64}{27}\ge64xyz\)
\(\Rightarrow\frac{27}{64}\le\frac{1}{64xyz}\)
\(\Rightarrow\frac{9}{4}\le3\sqrt[3]{\frac{1}{64xyz}}\)( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\ge\frac{9}{4}\)
Vậy \(M_{min}=\frac{9}{4}\)
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)
Áp dụng bất đẳng thức Cauchy Schawrz dạng Engel ta được:
\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\ge\frac{\left(1+2+4\right)^2}{16x+16y+16z}=\frac{7^2}{16\left(x+y+z\right)}=\frac{49}{16.1}=\frac{49}{16}\)
Dấu "=" xảy ra khi \(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\). Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16x+16y+16z}=\frac{7}{16\left(x+y+z\right)}=\frac{7}{16.1}=\frac{7}{16}\)
=>\(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)
Vậy Mmin=49/16 khi \(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)
cho x+y=5 tim gia tri nho nhat cua bieu thuc A=|x+1|+|y-2|
\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|=\left|5-1\right|=4\)
Dấu "=" xảy ra khi và chỉ khi: \(\left(x+1\right)\left(y-2\right)=\left|\left(x+1\right)\left(y-2\right)\right|\)
<=> (x+1)(y-2) lớn hơn hoặc bằng 0
<=> x+1 lớn hơn hoặc bằng 0 và y-2 lớn hơn hoặc bằng 0
x+1 bé hơn hoặc bằng 0 và y-2 bé hơn hoặc bằng 0
<=> x lớn hơn hoặc bằng -1 và y lớn hơn hoặc bằng 2
x bé hơn hoặc bằng -1 và y bé hơn hoặc bằng 2
<=> x lớn hơn hoặc bằng 2
x bé hơn hoặc bằng -1
Vậy Amin = 4 khi và chỉ khi x lớn hơn hoặc bằng 2 hoặc x bé hơn hoặc bằng -1
cho bieu thuc M=(x-1)^2+(y+3)^2+2002. tim gia tri nho nhat cua bieu thuc m
Tim gia tri nho nhat cua bieu thuc: P=|x|+7
(x€Z)
Tim gia tri lon nhat cua bieu thuc :Q=9-|x|
1) Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2) Ta có: Q = 9 - |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)
Đẳng thức xảy ra khi: |x| = 0 => x = 0
Vậy giá trị nhỏ nhất của p là 7 khi x = 0
b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)
Đẳng thức xảy ra khi: -|x| = 0 => x = 0
Vậy giá trị lớn nhất của Q là 9 khi x = 0
1﴿ Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2﴿ Ta có: Q = 9 ‐ |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
k nha bị âm r
Tim gia tri nho nhat cua bieu thuc
(x+1)^2+(y-2)^2+9
Ta có: (x + 1)2 \(\ge\)0 và (y - 2)2 \(\ge\) 0
=> (x + 1)2 + (y - 2)2 + 9 \(\ge\)9
Đẳng thức xảy ra khi: (x + 1)2 = 0 và (y - 2)2 = 0 => x = -1 và y = 2
Vậy giá trị nhỏ nhất của (x + 1)2 + (y - 2)2 + 9 là 9 khi x = -1 và y = 2
\(A=\left(x+1\right)^2+\left(y-2\right)^2+9\)
Có: \(\left(x+1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\left(x+1\right)^2+\left(y-2\right)^2+9\ge9\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\) .
Vậy: \(Min_A=9\) tại \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Tim gia tri nho nhat cua bieu thuc B = (x+1)^2+(y+3)^2+1
HELP ME !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Ta có (x+1)^2\(\ge0với\forall x\) (y+3)^2\(\ge0\)với\(\forall y\)(bình phương không âm)
=>B=(x+1)^2+(y+3)^2+1\(\ge1\)
tim gia tri nho nhat cua bieu thuc M=(x-1)^2+(y+3)^2+5
ta thấy: (x-1)^2 >hoặc =0
(y+3)^2 >hoặc = 0
suy ra (x-1)^2+ (y+3)^2 > hoac = 0
suy ra (x-1)^2+ (y+3)^2+ 5 > hoặc = 5
Để M đạt giá trị nhỏ nhất khi và chỉ khi M=5
Vậy M đạt giá trị nhỏ nhất =5
Cho x,y la so duong va x+y=1.Tim gia tri nho nhat cua bieu thuc P=2(x^4+y^4)+1/4xy
tim gia tri nho nhat cua bieu thuc tim gia tri nho nhat cua bieu thuc x^4-4x^3+12x^2-16x+16