Những câu hỏi liên quan
Nguyễn Thị Mai Anh
Xem chi tiết
Nguyễn Phạm Châu Anh
Xem chi tiết
Đinh Đức Hùng
22 tháng 3 2017 lúc 18:02

Sửa lại đề :

Cho \(0\le x\le y\le z\le1\) CMR : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2\)

Giải :

Từ \(x\le y\le1\Rightarrow\hept{\begin{cases}x-1\le0\\y-1\le0\end{cases}\Rightarrow\left(x-1\right)\left(y-1\right)\ge0}\)

\(\Rightarrow xy-x-y+1\ge0\Rightarrow xy+1\ge x+y\)

\(\Rightarrow\frac{1}{xy+1}\le\frac{1}{x+y}\Rightarrow\frac{z}{xy+1}\le\frac{z}{x+y}\)\(\left(x\ge0\right)\)

Mà \(\frac{z}{x+y}\le\frac{2z}{x+y+z}\) nên \(\frac{z}{xy+1}\le\frac{2z}{x+y+z}\left(1\right)\)

CM tương tự ta cũng có :\(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{2x}{x+y+z}\left(2\right)\\\frac{y}{xz+1}\le\frac{2y}{x+y+z}\left(3\right)\end{cases}}\)

Cộng các vế của (1) ; (2) ; (3) lại ta được :

\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) (ĐPCM)

\(\)

Bình luận (0)
Nguyễn Minh Hiển
Xem chi tiết
Angela jolie
Xem chi tiết
Akai Haruma
27 tháng 6 2020 lúc 11:54

Lời giải:

Do $x,y,z\in [0;1]$ nên $1+yz; 1+xz; 1+xy\geq 1+xyz$

$\Rightarrow \frac{x}{1+yz}+\frac{y}{1+xz}+\frac{z}{1+xy}\leq \frac{x+y+z}{1+xyz}$

Ta cần chứng minh: $\frac{x+y+z}{1+xyz}\leq 2$

$\Leftrightarrow x+y+z\leq 2+2xyz(*)$

Thật vậy:

$x,y\in [0;1]\Rightarrow (x-1)(y-1)\geq 0$

$\Leftrightarrow xy+1\geq x+y\Rightarrow xy+z+1\geq x+y+z(1)$
Mà:

$xy+z+1-(2+2xyz)=xy+z-2xyz-1=xy(1-z)-(1-z)-xyz=(xy-1)(1-z)-xyz\leq 0$ do $0\leq x,y,z\leq 1$)

$\Rightarrow xy+z+1\leq 2+2xyz(2)$

Từ $(1);(2)\Rightarrow x+y+z\leq 2+2xyz$

BĐT $(*)$ đc chứng minh nên ta có đpcm.

Dấu "=" xảy ra khi $(x,y,z)=(1,1,0)$ và hoán vị

Bình luận (0)
tthnew
1 tháng 7 2020 lúc 20:09

Trâu bò nhưng bù lại là đơn giản:

\(VP-VT\equiv f\left(x,y,z\right)=f\left(\frac{a}{a+1},\frac{b}{b+1},\frac{c}{c+1}\right)\ge0\)

Bất đẳng thức cuối quy đồng lên sẽ thấy điều hiển nhiên ;)

Bình luận (0)
Lê Huỳnh
Xem chi tiết
Lê Huỳnh
Xem chi tiết
Phước Nguyễn
23 tháng 4 2016 lúc 21:15

Bạn ghi sai đề rồi nhé! Nếu ta lần lượt thay số vào các biến  \(x,y,z\) ở vế trái của bất đẳng thức trên (chẳng hạng như  \(\frac{1}{3}\)) kết hợp với chú ý rằng \(x=y=z\)  (sẽ được chứng minh ở các bước sau này), khi đó kết quả sẽ cho ra khác, tức là  \(\frac{3}{\sqrt{2}}\) (vô lý!). Đó là lý do mình phải 'viết lại' đề cộng với một chút chỉnh sửa hợp lý về phương diện toán học. Hmmm, vất vả vật lộn với bài này quá nya. \(3\)  \(s\) đi!

Đề: Cho ba số thực dương  \(x,y,z\)  thỏa mãn  \(x+y+z=1\)  

Chứng minh rằng: \(\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{xz}{y+yz}}\le\frac{3}{2}\)  \(\left(\text{*}\right)\)

Lời giải:

Từ giả thiết đã cho ở trên, ta dễ dàng chứng minh được  \(1>x,y,z>0\)  với mọi  \(x,y,z\in R^+\)

\(\Rightarrow\)  \(1-x>0;\)  \(1-y>0;\)  \(1-z>0\)  

Khi đó, áp dụng bất đẳng thức  \(AM-GM\)  cho hai số không âm với chú ý rằng  \(x+y+z=1\)  (theo giả thiết), ta có: 

\(\sqrt{\frac{xy}{z+xy}}=\sqrt{\frac{xy}{1-x-y+xy}}=\sqrt{\frac{xy}{\left(1-x\right)\left(1-y\right)}}\le\frac{1}{2}\left(\frac{x}{1-y}+\frac{y}{1-x}\right)\)  \(\left(1\right)\)

Hoàn toàn tương tự với vòng hoán vị  \(y\)  \(\rightarrow\)  \(z\)  \(\rightarrow\)  \(x\), ta chứng minh được:

\(\sqrt{\frac{yz}{x+yz}}\le\frac{1}{2}\left(\frac{y}{1-z}+\frac{z}{1-y}\right)\)  \(\left(2\right)\)  và  \(\sqrt{\frac{xz}{y+xz}}\le\frac{1}{2}\left(\frac{z}{1-x}+\frac{x}{1-z}\right)\)  \(\left(3\right)\)

Cộng từng vế các bất đẳng thức \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right),\)  ta được:

\(VT\left(\text{*}\right)\le\frac{1}{2}\left[\left(\frac{y}{1-x}+\frac{z}{1-x}\right)+\left(\frac{x}{1-y}+\frac{z}{1-y}\right)+\left(\frac{x}{1-z}+\frac{y}{1-z}\right)\right]=\frac{1}{2}\left(1+1+1\right)=\frac{3}{2}=VP\left(\text{*}\right)\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c=\frac{1}{3}\)

Bình luận (0)
Trần Anh
23 tháng 4 2016 lúc 20:31

ở mẫu phải là dấu cộng mới đúng chứ bạn

Bình luận (0)
Kiki :))
Xem chi tiết
Akai Haruma
1 tháng 2 2020 lúc 21:41

Lời giải:

Vì $0\leq x\leq y\leq z\leq 1\Rightarrow 0\leq xy\leq xz\leq yz$

$\Rightarrow \frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\leq \frac{x+y+z}{xy+1}(1)$

Xét $\frac{x+y+z}{xy+1}-2=\frac{x+y+z-2xy-2}{xy+1}=\frac{(x-1)(1-y)+(z-xy-1)}{xy+1}\leq 0$ do $0\leq x\leq y\leq z\leq 1$)

$\Rightarrow \frac{x+y+z}{xy+1}\leq 2(2)$

Từ $(1);(2)\Rightarrow \frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\leq 2$ (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
Vũ Minh Tuấn
1 tháng 2 2020 lúc 20:46

Bài này mà lớp 7 á? Nguyễn Thiện Nhân

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Huy Hoàng Sơn
3 tháng 2 2020 lúc 22:02

Lời giải:

0≤x≤y≤z≤1⇒0≤xy≤xz≤yz0≤x≤y≤z≤1⇒0≤xy≤xz≤yz

⇒xyz+1+yxz+1+zxy+1≤x+y+zxy+1(1)⇒xyz+1+yxz+1+zxy+1≤x+y+zxy+1(1)

Xét x+y+zxy+1−2=x+y+z−2xy−2xy+1=(x−1)(1−y)+(z−xy−1)xy+1≤0x+y+zxy+1−2=x+y+z−2xy−2xy+1=(x−1)(1−y)+(z−xy−1)xy+1≤0 do 0≤x≤y≤z≤10≤x≤y≤z≤1)

⇒x+y+zxy+1≤2(2)⇒x+y+zxy+1≤2(2)

Từ (1);(2)⇒xyz+1+yxz+1+zxy+1≤2(1);(2)⇒xyz+1+yxz+1+zxy+1≤2 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
Arceus Official
Xem chi tiết
Thắng Nguyễn
7 tháng 3 2018 lúc 18:27

Áp dụng BĐT AM-GM ta có: 

\(VT=\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{xz}{y+xz}}+\sqrt{\frac{yz}{x+yz}}\)

\(=\sqrt{\frac{xy}{z\left(x+y+z\right)+xy}}+\sqrt{\frac{xz}{y\left(x+y+z\right)+xz}}+\sqrt{\frac{yz}{x\left(x+y+z\right)+yz}}\)

\(=\sqrt{\frac{xy}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}+\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\)

\(\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{y+z}+\frac{x}{x+y}+\frac{z}{y+z}+\frac{y}{x+y}+\frac{z}{x+z}\right)\)

\(=\frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)

Dấu "=" <=> \(x=y=z=\frac{1}{3}\)

Ủng hộ và kb với mình ha ^^

Bình luận (0)
hoài phan
6 tháng 3 2018 lúc 23:12
Từ gt suy ra z=1-x-y Thầy vào sau đó áp dụng AM-GM
Bình luận (0)
Nguyễn Phương Quỳnh Chi
Xem chi tiết
zZz Cool Kid_new zZz
20 tháng 7 2020 lúc 10:44

\(0\le x,y,z\le1\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\)

Tương tự:

\(yz+1\ge y+z;zx+1\ge z+x\)

Khi đó

\(LHS\le\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\le\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=2\)

Không chắc nha !

Bình luận (0)
 Khách vãng lai đã xóa