Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Princess U
Xem chi tiết
Nguyễn Linh Chi
21 tháng 2 2019 lúc 8:18

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

Incursion_03
21 tháng 2 2019 lúc 8:25

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

Princess U
21 tháng 2 2019 lúc 17:29

cảm ơn mọi người ạ <3

Linh_Chi_chimte
Xem chi tiết
NGUYỄN DOÃN ANH THÁI
Xem chi tiết
Trần Nguyễn Vân Ngọc
Xem chi tiết
Conan thời hiện đại
7 tháng 1 2019 lúc 10:36

i will chịu

Aeris
Xem chi tiết
Phùng Gia Bảo
Xem chi tiết
lý canh hy
Xem chi tiết
Bùi Minh Quân
Xem chi tiết
Kiệt Nguyễn
12 tháng 5 2020 lúc 19:12

\(ĐK:x,y\ge\frac{-1}{2}\)

Xét hệ\(\hept{\begin{cases}\sqrt{2x+1}+\sqrt{2y+1}=\frac{\left(x-y\right)^2}{2}\left(1\right)\\\left(3x+2y\right)\left(y+1\right)=4-x^2\left(2\right)\end{cases}}\)

Ta có:\(\left(2\right)\Leftrightarrow3xy+3x+2y^2+2y+x^2-4=0\)

\(\Leftrightarrow x\left(x+y-1\right)+2y\left(x+y-1\right)+4\left(x+y-1\right)=0\)\(\Leftrightarrow\left(x+2y+4\right)\left(x+y-1\right)=0\)

Vì \(x,y\ge\frac{-1}{2}\)nên \(x+2y+4>0\)do đó \(x+y-1=0\Leftrightarrow y=1-x\)

Thay \(y=1-x\)vào (1), ta được: \(\sqrt{2x+1}+\sqrt{3-2x}=\frac{4x^2-4x+1}{2}\)

Với \(ĐK:\frac{-1}{2}\le x\le\frac{3}{2}\). Đặt\(\sqrt{2x+1}+\sqrt{3-2x}=t\left(t>0\right)\)\(\Rightarrow t^2=4+2\sqrt{\left(2x+1\right)\left(3-2x\right)}\Leftrightarrow\sqrt{-4x^2+4x+3}=\frac{t^2-4}{2}\)

\(\Leftrightarrow-4x^2+4x-1=\left(\frac{t^2-4}{2}\right)^2-4\Leftrightarrow\frac{4x^2-4x+1}{2}=-\frac{t^4-8t^2}{8}\)

Từ đó ta có phương trình \(t=-\frac{t^4-8t^2}{8}\Leftrightarrow t\left(t^3-8t+8\right)=0\)

\(\Leftrightarrow t\left(t-2\right)\left(t^2+2t-4\right)=0\). Mà t > 0 nên \(\orbr{\begin{cases}t=2\\t=\sqrt{5}-1\end{cases}}\)

 * Với t = 2, ta có: \(\sqrt{-4x^2+4x+3}=0\Leftrightarrow\left(2x-3\right)\left(2x+1\right)=0\)\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\Rightarrow y=-\frac{1}{2}\\x=-\frac{1}{2}\Rightarrow y=\frac{3}{2}\end{cases}}\)(tmđk)

* Với \(t=\sqrt{5}-1\), ta có: \(\sqrt{-4x^2+4x+3}=\frac{\left(\sqrt{5}-1\right)^2-4}{2}\)\(\Leftrightarrow\sqrt{-4x^2+4x+3}=1-\sqrt{5}< 0\)(vô lí)

Vậy hệ phương trình có 2 nghiệm (x;y) là \(\left(-\frac{1}{2};\frac{3}{2}\right)\)và \(\left(\frac{3}{2};-\frac{1}{2}\right)\)

Khách vãng lai đã xóa
Nguỵ Gia Sơn
12 tháng 5 2020 lúc 18:52

ko biết vì em học lớp 1

Khách vãng lai đã xóa
Nguỵ Gia Sáng
12 tháng 5 2020 lúc 19:06

sơn béo,sáng ăn như heo,

Khách vãng lai đã xóa
Hắc Thiên
Xem chi tiết
Hắc Thiên
30 tháng 12 2019 lúc 22:45



Đặt \(\sqrt{2x+1}=a,\sqrt{2y+1}=b\) thì pt thứ 2 trở thành: \(2\left(a+b\right)=\frac{\left(a^2-b^2\right)^2}{2}\)
 

=> 2 TH \(\orbr{\begin{cases}a+b=0\\2=\frac{\left(a-b\right)^2\left(a+b\right)}{4}\left(1\right)\end{cases}}\)

pt trên thì dễ r

pt (1) <=> \(8=\left(a-b\right)^2\left(a+b\right)=>8=\frac{\left(\sqrt{2x+1}-\sqrt{2y+1}\right)^2\left(x-y\right)^2}{2} =>16=\left(\sqrt{2x+1}-\sqrt{2y+1}\right)^2\left(x-y\right)^2\)
 

đến đây xét 2 Th 
đặt nhìn cho dễ nhá

đặt x-y=c 
khi đó ta có \(\hept{\begin{cases}\left(a-b\right)c=4\\a+b=\frac{c^2}{2}\end{cases}}\) 

nhân từng vế 2 pt trên ta có a^2-b^2=2c=> 2x+2y+2=2(x-y)=> 2y+1=0...
tương tự mấy Th còn lại







 

Khách vãng lai đã xóa
Tran Le Khanh Linh
8 tháng 5 2020 lúc 19:37

\(\hept{\begin{cases}\sqrt{2x+1}+\sqrt{2y+1}=\frac{\left(x-y\right)^2}{2}\left(1\right)\\\left(x+y\right)\left(x+2y\right)+3x+2y=4\left(2\right)\end{cases}}\)

ĐK \(\hept{\begin{cases}x\ge\frac{-1}{2}\\y\ge\frac{-1}{2}\end{cases}}\)

PT (2) <=> \(x^2+\left(3y+3\right)x+2y^2+2y-4=0\Leftrightarrow\orbr{\begin{cases}x+y-1=0\\x+2y+4=0\left(loai\right)\end{cases}}\)

PT (1) <=> \(\sqrt{2x+1}-\sqrt{2y+1}=\frac{\left(x+y\right)^2-4xy}{2}\)

\(\Leftrightarrow2\left(x+y\right)+2+2\sqrt{4xy+2\left(x+y\right)+1}=\left(\frac{\left(x+y\right)^2-4xy}{2}\right)^2\)

\(\Leftrightarrow8\sqrt{4xy+3}=\left(4xy+3\right)\left(4xy-5\right)\)

\(\Leftrightarrow\orbr{\begin{cases}4xy+3=0\\\left(4xy-5\right)\sqrt{4xy+3}=8\left(loai\right)\left(1=\left(x+y\right)^2\ge4xy\Rightarrow4xy-5< 0\right)\end{cases}}\)

Hệ phương trình đã cho tương đương

\(\hept{\begin{cases}x+y=1\\xy=\frac{3}{4}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{2}\end{cases}}}\)và \(\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{-1}{2}\end{cases}}\)

Vậy hệ phương trình đã cho có 2 nghiệm \(\left(x;y\right)=\left(\frac{-1}{2};\frac{3}{2}\right);\left(\frac{3}{2};-\frac{1}{2}\right)\)

Khách vãng lai đã xóa