Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lưu Hạ Diệp
Xem chi tiết
Trần Thanh Phương
13 tháng 1 2019 lúc 16:24

Gọi ƯC(n+2;2n+5) là d

Ta có :

n + 2 ⋮ d => 2( n + 2 ) ⋮ d => 2n + 4 ⋮ d (1)

2n + 5 ⋮ d (2)

Từ (1) và (2) ta có : 

2n + 5 - 2n - 4 ⋮ d

<=> 1 ⋮ d

=> d thuộc Ư(1) = 1

=> d = 1

Vậy n + 2 và 2n + 5 có ước chung lớn nhất bằng 1 => n + 2 / 2n + 5 tối giản ( đpcm )

Kiệt Nguyễn
13 tháng 1 2019 lúc 16:27

                                 Giải

Ta phải chứng minh : \(\left(n+2,2n+5\right)=1\)

Đặt ( n + 2 , 2n + 5 ) = d

\(\Rightarrow\hept{\begin{cases}\left(n+2\right)⋮d\\\left(2n+5\right)⋮d\end{cases}}\)

\(\Rightarrow\left[2\left(n+2\right)\right]⋮d\)

\(\Rightarrow\left(2n+4\right)⋮d\)

\(\Rightarrow\left(2n+5\right)-\left(2n+4\right)⋮d\)

\(\Rightarrow2n+5-2n-4⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

Vậy \(\frac{n+2}{2n+5}\)tối giản với mọi n \(\inℤ\) \(\left(đpcm\right)\)

Đặng Tú Phương
13 tháng 1 2019 lúc 19:04

Gọi d là \(ƯC\left(n+2,2n+5\right)\Rightarrow n+2⋮d\)và \(2n+5⋮d\)

\(\Rightarrow2\left(n+2\right)⋮d\)và \(2n+5⋮d\)

\(\Rightarrow\left[\left(4n+5\right)-\left(4n+4\right)\right]⋮d\Rightarrow1⋮d\Rightarrow d=\pm1\)

Vậy \(\frac{n+2}{2n+5}\)là phân số tối giản 

Diêm Mỹ Hạnh
Xem chi tiết
Hermione Granger
12 tháng 11 2021 lúc 12:49

\(a)\frac{n+5}{n+6}\)

Có: \(\frac{n+5}{n+6}=\frac{n+6-1}{n+6}=\frac{n+6}{n+6}-\frac{1}{n+6}=1-\frac{1}{n+6}\)

Để \(\frac{n+5}{n+6}\inℤ\Rightarrow n+6\inƯ\left(1\right)\)

\(Ư\left(1\right)\in\left\{\pm1\right\}\Rightarrow n+6\in\left\{1;-1\right\}\)

\(\Rightarrow n\in\left\{-5;-7\right\}\)

Khách vãng lai đã xóa
Nguyễn Phương Thảo
Xem chi tiết
Cao yến Chi
Xem chi tiết
Nguyễn Phương Uyên
14 tháng 4 2020 lúc 14:31

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

Khách vãng lai đã xóa
Nguyễn Thị Huyền Trang
14 tháng 4 2020 lúc 14:50

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

Khách vãng lai đã xóa
Cao yến Chi
15 tháng 4 2020 lúc 13:45

các bn giải hộ mk bài 2 ik

thật sự mk đang rất cần nó!!!

Khách vãng lai đã xóa
Vũ Nhật Minh
Xem chi tiết
Văn Thanh Lương
12 tháng 5 2021 lúc 20:05

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

Khách vãng lai đã xóa
Nguyễn Khánh Linh
Xem chi tiết
Tran Le Khanh Linh
8 tháng 4 2020 lúc 9:54

*) Gọi d là ƯCLN (3+n; 2n+5) (d thuộc N*)=> \(\hept{\begin{cases}3+n⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3+n\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6+2n⋮d\\2n+5⋮d\end{cases}}}\)

=> (2n+6)-(2n+5) chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d=1

=> ƯCLN (3+n; 2n+5)=1

=> đpcm

*) Gọi d là ƯCLN (4-3n; 2n-3) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}4-3n⋮d\\2n-3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2\left(4-3n\right)⋮d\\3\left(2n-3\right)⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}8-6n⋮d\\6n-9⋮d\end{cases}}}\)

=> (8-6n)+(6n-9) chia hết cho d

=> -1 chia hết cho d

Mà d thuộc N* => d=1

=> ƯCLN (4-3n;2n-3) =1 => đpcm

Khách vãng lai đã xóa
Nguyen Thuy Tien
Xem chi tiết
không quan tâm
25 tháng 2 2019 lúc 12:21

Gọi ƯCLN(n-5;3n-14) là d, Ta có :

 n-5 =3n-15 chia hết cho d ; 3n-14 chia hết cho d      

=>(n-5)-(3n-14)=1 chia hết cho d

=>d=1 hoặc -1 =>n-5 và 3n-14 là psố tối giản

không quan tâm
25 tháng 2 2019 lúc 12:22

k cho min nha !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

l҉o҉n҉g҉ d҉z҉
10 tháng 5 2020 lúc 8:43

Gọi d là ƯC(n - 5 ; 3n - 14)

\(\Rightarrow\hept{\begin{cases}n-5⋮d\\3n-14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n-5\right)⋮d\\3n-14⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3n-15⋮d\\3n-14⋮d\end{cases}}}\)

=> ( 3n - 15 ) - ( 3n - 14 ) chia hết cho d 

=> 3n - 15 - 3n + 14 chia hết cho d

=> ( 3n - 3n ) + ( 14 - 15 ) chia hết cho d

=> 0 + ( -1 ) chia hết cho d

=> -1 chia hết cho d

=> d = 1 hoặc d = -1

=> ƯCLN(n - 5 ; 3n -14) = 1

=> \(\frac{n-5}{3n-14}\)tối giản ( đpcm )

Khách vãng lai đã xóa
Nguyen Duy Hieu
Xem chi tiết
Kiệt Nguyễn
19 tháng 3 2019 lúc 19:16

                              Giải

Đặt \(\left(n+3,2n+5\right)=d\)

\(\Leftrightarrow\hept{\begin{cases}\left(n+3\right)⋮d\\\left(2n+5\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[2\left(n+3\right)\right]⋮d\\\left(2n+5\right)⋮d\end{cases}}\)

\(\Leftrightarrow\left[2\left(n+3\right)-\left(2n+5\right)\right]⋮d\)

\(\Leftrightarrow\left[2n+6-2n-5\right]⋮d\)

\(\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy \(\frac{n+3}{2n+5}\) là phân số tối giản (đpcm)

Nguyễn Thị Minh Ánh
Xem chi tiết
NGUYỄN THẾ HIỆP
21 tháng 2 2017 lúc 12:41

Đặt UC(n+2,2n+3)=d

Ta có: 

\(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}2\left(n+2\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow1=d\)

Vậy phân số tối giản

nguyenphuhoanganh
21 tháng 2 2017 lúc 12:39

gọi ucln của n+2va 2n+3 là d

ta có:

n+2=2n+4;2n+3 du nguyen

2n+4-2n+3

=>1chia het cho d

vi d la ucln cua 1=>d=1

=>do la phan so toi gian

Trần Nhật Minh Anh
Xem chi tiết