Chứng minh rằng nếu n là số tự nhiên lẻ thì \(n^3+1\) không thể là số chính phương
chứng minh rằng nếu n là số tự nhiên lẻ thì n^3 + 1 không thể là số chính phương
n lẻ nên n^3 lẻ. vậy n^3+1 chẵn. mà số chính phương chỉ có 2 là chẵn, còn lại lẻ ->đpcm
n có dạng 2k+1
n3+1 = (2k+1)3+1 = 8k3+12k2+6k+1+1=8k3+12k2+6k+2
Vì 8k3;6k và 2 không thể là số chính phương nên suy ra n3+1 không là số chính phương khi n lẻ.
Chứng minh rằng nếu n là số tự nhiên lẻ thì n^3 + 1 không thê là số chính phương
Chứng minh rằng với n là số tự nhiên lẻ thì n3+1 không thể là số chính phương?
đề bài là như vậy phải ko: Chứng minh rằng với n là số tự nhiên lẻ thì n3+1 không thể là số chính phương?
giả sử
n^3 +1 = a^2 , a là số tự nhiên
=>n>a>0
=>n lớn hơn hoặc bằng a+1
=> a^2 = n^3 +1 lớn hơn hoặc bằng (a+1)^3 +1
=>a^3 + 2a^2 +3a +2 nhỏ hơn hoặc bằng không
=> a=0
=> n= -1 vô lí
=> đpcm
Ko hiểu, tại sao n>a vậy. Thấy từ dòng n^3+1=a^2 => n>a ko thấy hợp lí cho lắm vì n với a chả có mối quan hệ nào cả, nếu n=1 thì a=căn2, vậy a>n mới đúng chứ
bài1
tìm số tự nhiên n có 4 chữ số, biết rằng n là số chính phương và n là bội của 147
bài 2
chứng minh rằng: n^2012+1 không phải là số chính phương với n là số tự nhiên lẻ.
bai 1 : M = 147*k (với k tự nhiên nào đó) = 3*49*k Vì M là số chính phương chia hết cho 3 nên phải chia hết cho 9 => k chia hết cho 3 => M = 9*49*k1 = 21^2*k1 = k2^2 (M là bình phương của k2) Do M có 4 chữ số nên 3 < k1 < 23. k1 = k2^2/21^2 = (k2/21)^2 vậy k1 là số chính phương => k1 = 4, 9, 16 => M = 441*k1 = 1764, 3969, 7056
Chứng minh rằng : Với mọi n thuộc N sao
a ) Tổng của n số tự nhiên lẻ đầu tiên là số chính phương
b ) Tổng của n số tự nhiên chẵn khác 0 đầu tiên không là số chính phương
chứng minh rằng A= n^4+2*n^3+2*n^2+2*n+1 không thể là số chính phương với n là số tự nhiên
Chứng minh rằng với mọi số tự nhiên n \(\ge\)5 thì số A = 1 ! + 2 ! + 3 ! + ..................+ n ! không thể là số chính phương
A = 1 + 2.1 + 3.2.1 + 4.3.2.1 + 5! + ...+ n! = 33 + 5! + ...+ n!
Nhận xét: Từ 5! trở đi mỗi số hạng đều tận cùng là 0 (Vì chứa 5.2 = 10) => A có tận cùng là 3
=> A không thể là số chính phương
Chứng minh rằng nếu n là số tự nhiên sao cho n +1 và 2n +1 đều là số chính phương thì n là bội của 24
Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)
Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)
Từ (1),(2)(1),(2) có n⋮24n⋮24.
Bài 1:
a/ cho n là số tự nhiên và n-1 không chia hết cho 4. cmr 7n+2 không thể là số chính phương
b/ chứng minh số n=\(2004^4+2004^3+2004^2+23\)không là số chính phương
c/có 1000 mảnh bìa hình chữ nhật, trên môi mảnh bìa đc ghi 1 trong các số từ 2 đến 1001 sao cho không có 2 mảnh nào ghi số giống nhau.chứng minh rằng không thể ghép tất cả các mảnh bìa này liền nhau để được 1 số chính phương.
Bài 2: Chứng minh rằng nếu 1 số tự nhiên không chia hết cho 2 và 5 thì tồn tại bội của nó có dạng: 111...11.
Chứng minh rằng : nếu số ước của một số tự nhiên là một số lẻ thì số đó là một số chính phương
https://www.youtube.com/watch?v=cFZDEMTQQCs