\( {1 \over 210}+{1 \over 240}+{1 \over 272}+{1 \over 306}\)
Tính hợp lý nhất
a, 1/210+1/240+1/272+1/306
b, 191/210+161/240+129/272+95/306
giúp mình với huhuhu
a, 1/210+1/240+1/272+1/306
= 1/14.15 + 1/15.16 + 1/16.17 +1/17.18
= 1/14 - 1/15 + 1/15 - 1/16 +1/16 - 1/17 + 1/17 - 1/18
= 1/14 - 1/18 = 1/63
a) \(\frac{1}{210}+\frac{1}{240}+\frac{1}{272}+\frac{1}{306}\)
=\(\frac{1}{14.15}+\frac{1}{15.16}+\frac{1}{16.17}+\frac{1}{17.18}\)
=\(\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{16}+\frac{1}{16}-\frac{1}{17}+\frac{1}{17}-\frac{1}{18}\)
=\(\frac{1}{14}-\frac{1}{18}=\frac{1}{63}\)
b)\(\frac{191}{210}+\frac{161}{240}+\frac{129}{272}+\frac{95}{306}\)
=\(\frac{191}{14.15}+\frac{161}{15.16}+\frac{129}{16.17}+\frac{95}{17.18}\)
=\(\frac{191}{14}-\frac{191}{15}+\frac{161}{15}-\frac{161}{16}+\frac{129}{16}-\frac{129}{17}+\frac{95}{17}-\frac{95}{18}\)
tự làm tiếp
Bài 1:Tính
a) A= (-3)+(-6)+(-9)+...+(-90)
b) \(B = {3\over 5.7}+{3\over 7.9}+{3\over 9.11}+...+{3\over97.99}\)
Bài 2:
a)So sánh: \( A = {15^30-1 \over 15^29-1} và B= {15^31-1\over 15^30-1}\)
b)Tìm chữ số a, b biết: 4a5b \(⋮\)4, 4a5b : 3 dư2
Bài 3:Tính A/B:
\(A = {1\over2}+{1\over3}+{1\over4}+...+{1\over308}+{1\over309} \)
\(B = { 308\over1}+{ 307\over 2}+{ 306\over 3}+...+{ 3\over306}+{ 2\over 307}+{ 3\over 308}\)
1/210+1/240+1/272+1/306
1/210+1/240+1/272+1/306
=1/112+1/272+1/306
=3/238+1/306
=1/63
1/210+1/240+1/272+1/306
\(\frac{49}{5360}\)+\(\frac{1}{272}\)+\(\frac{1}{306}\)=\(\frac{73}{5695}\)+\(\frac{1}{306}\)=\(\frac{97}{6030}\)
1/210+1/240+1/272+1/306
Chứng minh rằng:\(1-{1 \over 2}+{1 \over 3}-...-{1 \over 1990}={1 \over 996}+{1 \over 997}+...+{1 \over 1990}\)
cm gi ???????????????????????????????
\((100+ {99 {} \over 2}+{98 {} \over 3}+...+{1 {} \over 100})/({1 {} \over 2}+{1 {} \over 3}+{1 {} \over 4}+...+{1 {} \over 101})-2\)
Bạn đăng lại câu hỏi đi. Sao mà không thấy đề gì hết
Giải các phương trình sau :
a, \({8 \over x-8} + { 11\over x-11} = {9 \over x-9} +{10 \over x-10}\)
b, \({x \over x-3} - {x \over x-5} = { x \over x-4} - { x\over x-6}\)
c, \({ 4\over x^2 - 3x + 2 } - { 3 \over 2x^2 - 6x +1 } +1 =0\)
d, \({1\over x-1} + {2\over x-2} + {3 \over x-3} = {6 \over x-6}\)
e, \({2\over 2x+1} - {3 \over 2x-1} = {4\over 4x^2 -1}\)
f, \({ 2x\over x +1 } + { 18 \over x^2 +2x-3} = {2x-5 \over x+3}\)
g, \({1 \over x-1} + { 2x^2 -5 \over x^3 -1 } = { 4 \over x^2 +x+1}\)
a, 8/x-8 + 11/x-11 = 9/x-9 + 10/ x-10
b, x/x-3 - x/x-5 = x/x-4 - x/x-6
c, 4/x^2-3x+2 - 3/2x^2-6x+1 +1 = 0
d, 1/x-1 + 2/ x-2 + 3/x-3 = 6/x-6
e, 2/2x+1 - 3/2x-1 = 4/4x^2-1
f, 2x/x+1 + 18/x^2+2x-3 = 2x-5 /x+3
g, 1/x-1 + 2x^2 -5/x^3 -1 = 4/ x^2 +x+1
Chứng minh rằng\(A = {1 \over 101}+{1\over 102} +{1\over 103}+{1\over 104}+...+{1\over 200}>{7\over 12}\)