cho hình bình hành ABCD có tâm O.Gọi M,N lần lượt là trung điểm của AD,BC.Tìm tất cả các vect u thỏa mãn vectơ u = 2ON
Cho hình bình hành ABCD, có M, N, P, Q lần lượt là các các trung điểm của AB, BC, CA, AD. HÌNH BÌNH HÀNH ABCD PHẢI THỎA MÃN ĐIỀU KIỆN GÌ ĐỂ TỨ GIÁC MPMQ LÀ HÌNH CHỮ NHẬT , HÌNH THOI, HÌNH VUÔNG?
Dễ dàng thấy ngay rằng các đoạn QM, PN, QP, MN là đường trung bình của các tam giác ADB, CDB, ADC, ABC.
Vậy thì QM song song và bằng PN hay tứ giác MNPQ là hình bình hành.
+) Để hình bình hành MNPQ là hình bình chữ nhật thì \(QM\perp MN\Leftrightarrow AC\perp BD\Leftrightarrow\) Hình bình hành ABCD là hình thoi.
+) Để hình bình hành MNPQ là hình bình thoi thì QM = MN hay AC = BD \(\Leftrightarrow\) Hình bình hành ABCD là hình chữ nhật.
+) Để hình bình hành MNPQ là hình vuông thì nó phải là hình chữ nhật và hình thoi, hay hình bình hành ABCD cũng là hình chữ nhật và hình thoi. Nói cách khác, ABCD phải là hình vuông.
Cho hình bình hành ABCD. Hai điểm M và N lần lượt là trung điểm của BC và AD. Cặp vectơ nào trong số các cặp vectơ sau đây không bằng nhau?
A. N C → + M C → v à A D →
B. A M → + C D → v à N D →
C. A B → - N C → v à M B →
D. A M → + A N → v à A B → + A D →
Do ABCD là hình bình hành nên: AD = BC.
Lại có; M và N lần lượt là trung điểm của BC; AD nên : AN = ND= BM = MC.
Cho hình bình hành ABCD. Hai điểm M và N lần lượt là trung điểm của BC và AD. Xác định tổng của 2 vectơ NC và vectơ AD
Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.
A. AD BC . B. MQ PN . C. MN QP . D. AB DC .
Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng
A. HA CD và AD CH .
B. HA CD và DA HC .
C. HA CD và AD HC .
D. HA CD và AD HC và OB OD .
Câu 1: Cho ABCD là hình vuông cạnh bằng 1. Khi đó độ dài của AC bằng
A. 1. B. 2. C. 2. D. 3.
Câu 2: Cho tam giác ABC vuông tại C có cạnh AC cm BC cm 4 , 3 . Độ dài của vectơ AB là
A. 7 . cm B. 6 . cm C. 5 . cm D. 4 . cm
Câu 3: Cho hình vuông ABCD tâm O, cạnh 2a. Độ dài vectơ DO bằng
A. 2 2. a B. 2 . 2 a C. a 2. D. 2 2. a
Câu 4: Cho đoạn thẳng AB cm 10 , điểm C thỏa mãn AC CB . Độ dài vectơ AC là
A. 10 . cm B. 5 . cm C. 20 . cm D. 15 . c
Hình bình hành ABCD có cạnh đáy AB = 6cm, BC = 4cm, với M; N; P; Q lần lượt là trung điểm của các cạnh AB; BC; AD; BC. Hỏi:
a) Hình trên có tất cả bao nhiêu hình bình hành?
b) Tổng chu vi của tất cả hình bình hành trên bằng bao nhiêu?
a) Hình trên có tất cả 9 hình bình hành
b) Chu vi hình bình hành ABCD bằng: (4 + 6) x 2 = 20cm
Chu vi hình bình hành AMOQ, BMON, DPOQ và NOPC là: 20 : 4 = 5cm
Chu vi hình bình hành ABNQ, QNDC, AMDP và BMPC là: 20 : 2 = 10cm
Tổng chu vi là: 20 + 5 x 4 + 10 x 4 = 80cm
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O.gọi M,N lần lượt là trung điểm của SA và CD. a,CMR:(OMN)//(SBC) b,Gọi I là trung điểm của SD, J là một điểm trên ABCD và cách đều AB,CD. chứng minh IJ//(SAB)
a.
Do M là trung điểm SA, O là trung điểm AC
\(\Rightarrow OM\) là đường trung bình tam giác SAC \(\Rightarrow OM||SC\Rightarrow OM||\left(SBC\right)\) (1)
N là trung điểm CD, O là trung điểm AC \(\Rightarrow ON\) là đường trung bình ACD
\(\Rightarrow ON||AD\Rightarrow ON||BC\Rightarrow ON||\left(SBC\right)\) (2)
Mà \(ON\cap OM=O\) ; \(OM;ON\in\left(OMN\right)\) (3)
(1);(2);(3) \(\Rightarrow\left(OMN\right)||\left(SBC\right)\)
b.
J cách đều AB, CD \(\Rightarrow J\) thuộc đường thẳng d qua O và song song AB, CD
- Nếu J trùng O \(\Rightarrow OI\) là đường trung bình tam giác SBD \(\Rightarrow OI||SB\Rightarrow OI||\left(SAB\right)\)
Hay \(IJ||\left(SAB\right)\)
- Nếu J không trùng O, ta có \(\left\{{}\begin{matrix}IO||SB\left(đtb\right)\Rightarrow IO||\left(SAB\right)\\d||AB\Rightarrow IJ||AB\Rightarrow OJ||\left(SAB\right)\end{matrix}\right.\)
\(\Rightarrow\left(OIJ\right)||\left(SAB\right)\Rightarrow IJ||\left(SAB\right)\)
a.
Do M là trung điểm SA, O là trung điểm AC
là đường trung bình tam giác SAC (1)
N là trung điểm CD, O là trung điểm AC là đường trung bình ACD
(2)
Mà ; (3)
(1);(2);(3)
b.
J cách đều AB, CD thuộc đường thẳng d qua O và song song AB, CD
- Nếu J trùng O là đường trung bình tam giác SBD
Hay
- Nếu J không trùng O, ta có
Cho hình bình hành ABCD . Gọi M,N là các điểm thỏa vectơ AM =2/3 AD , vectơ = 1/4BC . Gọi G là trọng tâm của tam giác CMN . Phân tích AG theo AB ,AD
Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm BC và AD.
Tìm tổng của hai vectơ AD và NC
ABCD là hbh => NCMA cũng là hình bình hành
Áp dụng quy tắc hình bình hành => ↓NC + ↓MC = ↓CA ( cái này đễ cho dễ hiểu thì trước tiên gọi O là trung điểm của MN => quy tắc hình bình hành ↓NC + ↓MC = 2↓CO = ↓CA)
↓AD + ↓NC = ↓AN + ↓ND + ↓NC = ↓AC + ↓ND = ↓AC + ↓MC = 2↓CI ( với I là trung điểm của AM)
↓AM + ↓CD = ↓AB + ↓BM + ↓CD = ↓BM
cho hình bình hành ABCD có m thuộc B sao cho MB=2MA, N là trung điểm CD. gọi I và J lần lượt là điểm thỏa mãn vectơ BI = m.vectoBC, vecto AJ=n.vectoAI. khi j là trọng tam của tam giác BMN thì m.n bằng bao nhiêu?