cho tam giác abc cân tại a góc a nhọn CD là đường phân giác góc ACB (d thuộc ab). qua d kẻ đường vuông góc CD, đường này cắt CN tại e. c/m : bd=1/2ec
Cho tam giác ABC cân tại A với A là góc nhọn. CD là đường phân giác góc ACB ( D thuộc AB) qua D kẻ đường vuông góc với CD, đường này cắt đường thẳng CB tại E. Chứng minh: BD=1/2 EC
Cho tam giác ABC cân tại A với A là góc nhọn. CD là đường phân giác góc ACB ( D thuộc AB) qua D kẻ đường vuông góc với CD, đường này cắt đường thẳng CB tại E. Chứng minh: BD=1/2 EC
cho tam giac ABC cân tại A( A là góc nhọn). Kẻ đường phân giác góc C cắt AB tại D. Từ D kẻ đường thẳng vuông góc với CD và cắt BC tại E. Chứng minh BD=1/2EC
Bài 1: Tam giác ABC vuông cân tại A, M thuộc AC. Kẻ tia Ax vuông góc với BM cắt BC tại H. K là điểm đối xứng với C qua H. Kẻ tia Ky vuông góc với BM cắt AB tại I. Tính góc AIM?
Bài 2: Tam giác ABC cân tại A với góc A nhọn. CD là đường phân giác của góc ACB ( D thuộc AB ). Qua D kẻ vuông góc với CD cắt CB tại E. CMR: BD = 1/2 EC.
Bùi Như Lạc cậu cũng hay đi bình phẩm người khác nhỉ chắc cậu hoàn hảo lắm à
Câu 4 : Cho tam giác ABC cân tại A với góc A nhọn, CD là đường phân giác của góc ACB (D thuộc AB) ; qua D kẻ đường vuông góc với CD cắt đường thẳng CB tại E. Chứng minh BD = 1/2EC.
Câu 5 : Cho tam giác ABC có ba góc nhọn, M là một điểm di động trên AB. Qua A, B vẽ các đường thẳng song song với CM, chúng lần lượt cắt các đường thẳng BC, CA tại P và Q. Tìm vị trí điểm M để biểu thức 1/AP + 1/BQ + 2011/CM đạt giá trị lớn nhất.
Cho tam giác ABC cân tại A với A là góc nhọn. CD là đường phân giác góc ACB ( D thuộc AB) qua D kẻ đường vuông góc với CD, đường này cắt đường thẳng CB tại E. Chứng minh: BD=1/2 EC
Gọi \(I \) là trung điểm của \(EC \).
Xét \(\bigtriangleup DEC \) vuông tại \(D \) có: \(DI\) là đường trung tuyến (\(I \) là trung điểm của \(EC \))
\(\Rightarrow DI=IC\) \(\Rightarrow \bigtriangleup DIC\) cân tại \(D\) \(\Rightarrow \widehat{D_1}=\widehat{C_2}\) (tính chất tam giác cân).
Ta có: \(\begin{cases} \widehat{C_1}=\widehat{C_2}\\ \widehat{D_1}=\widehat{C_2} (cmt) \end{cases} \Rightarrow \widehat{D_1}=\widehat{C_1} (=\widehat{C_2})\) . Mà chúng ở vị trí so le trong \(\Rightarrow DI//AC\) \(\Rightarrow \widehat{DIB}=\widehat{ACI}\) (đồng vị)\(\Rightarrow \widehat{DIB}=\widehat{DBI}(=\widehat{ACI})\)
\(\Rightarrow \bigtriangleup DBI\) cân tại \(D \) \(\Rightarrow BD=DI=\dfrac{1}{2}EC\) (đpcm).
Cho tam giác ABC cân tai A, CD là tia phân giác của của góc C ( D thuộc AB). Qua D, kẻ 1 đường thẳng vuông góc với CD cắt BC tại F. Đường thẳng kẻ qua D song song với BC cắt AC tại E, tia phân giác góc BAC cắt DE tại M.
a) CM : CF = 2BD
b) CM : MD = 1/4 CF
Cho tam giác ABC cân tại A. Kẻ phân giác CD ( D không thuộc AB). Qua D vẽ đường thẳng vuông góc với CD, cắt BC tại F và cắt CA tại K. Đường thẳng kẻ qua D và song song với BC cắt AC tại E. Phân giác của góc BAC cắt DE tại M. Chứng minh rằng: a) Hai tam giác CDF và CDK bằng nhau
GIÚP MIK ĐI GẤP QUÁ
Cho tam giác ABC cân tại A, có góc A nhọn, hai đường BM vac CN cắt nhau tại H.
a)CM tam giác AMB = tam giác ANC; góc ABM= góc ACN
b)CM HB=HC
c)Qua M kẻ đường thẳng ME song song với CN( E thuộc AB). CM :MN là phân giác của góc EMB
d) tia phân giác của góc ABM cắt MN tại P. Tính góc MEP
Làm câu d thôi ạ