Tìm x,y \(\in\)Z biết \(x^4+x^2-y^2+y+10=0\)
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Tìm y,x,z biết:
a. (x-1) mũ 2+(y-3) mũ 10+(z+4) mũ 100=0
b.|x+3|+|y-5|+|2z-4|=0
a,\(\left(x-1\right)^2+\left(y-3\right)^{10}+\left(z+4\right)^{100}=0\)0(1)
Có \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-3\right)^{10}\ge0\\\left(z+4\right)^{100}\ge0\end{cases}}\)(2)
Từ (1) và (2)\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-3\right)^{10}=0\\\left(z+4\right)^{100}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-1=0\Rightarrow x=1\\y-3=0\Rightarrow y=3\\z+4=0\Rightarrow z=-4\end{cases}}\)
Em làm tương tự với câu b, không hiểu gì thì hỏi anh
a, Tính
13-12+11+10-9+8-7-6+5-4+3+2-1
b, Tìm x,y và g Z biết
|x+20|+ |y+11|+ |g+2021| ≤ 0
A)
13 - 12 + 11 + 10 - 9 + 8 - 7 - 6 + 5 - 4 + 3 + 2 - 1
= 13 - ( 12 + 1 ) - ( 11 + 2 ) - ( 10 + 3 ) - ( 9 + 4 ) - ( 8 + 5 ) + ( 7 + 6 )
= 13 - 13 - 13 - 13 - 13 - 13 + 13
= 0 - 0 - 0 + 13
= 13
So sánh
11 và √10+√5
Tìm x,y,z biết |x-y+3|+(2x+3y-4)^2+√x+y+z=0
Tìm x,y,z biết [4*z-10*y]/3 = [10*x-3*z]/4 = [3*y-4*x]/10 và 2*x+3*y-z = 40
Tìm x,y,z biết: x-y+z=2 x+y-z=0 -x+y+z=4
x-y+z=2 (1)
x+y-z=0 (2)
-x+y+z=4 (3)
Cộng vế theo vế của (1),(2) và (3) ta được:
x-y+z+x+y-z-x+y+z=6
=>x+y+z=6 (4)
Từ -x+y+z=4=>y+z=4+x
Trừ (4) cho (1),vế theo vế:
x+y+z-x+y-z=4
=>2y=4=>y=2
Trừ (4) cho (2),vế theo vế:
x+y+z-x-y+z=6
=>2z=6=>z=3
Mà y+z=4+x=>4+x=2+3=5=>x=1
Vậy x=1;y=2;z=3
Tìm x,y,z biết: x:2=y:3;y:4=z:5 biết x+y-z=10
Theo đề ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)
=>\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và x+y-z= 10
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
=>\(\frac{x}{8}=2\)
\(\frac{y}{12}=2\)
\(\frac{z}{15}=2\)
=> x = 16
y = 24
z = 30
bạn kiểm tra lại giúp mình nha!
\(x:2=y:3\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(y:4=z:5\Rightarrow\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\frac{x}{8}=\frac{y}{10}=\frac{z}{15}=\frac{x+y-z}{8+10-15}=\frac{10}{5}=2\)
=>x=16;y=20;z=30
vậy (x;y;z)=(16;20;30)
Tìm \(x,y\in Z\) Sao cho x^2 + x - y^2 + y + 10 = 0
tìm x, y biết:
a. (x+2)2+/2x-y/<=0
b.(x+2)4+(x-2y)6+/x+y-z/=0
c.x2-10=-(y-3)2