Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huyền Nguyễn Khánh
Xem chi tiết
nguyen dieu huong
Xem chi tiết
Anh Nguyendieu
27 tháng 9 2019 lúc 17:47

x+y=2

\(\Rightarrow\)x=1; x=0; x=-1; x=-2;...

y=1; y=2; y=3; y=4;...

\(\Rightarrow\)x.y= 1.1=1=1

0.2=0<1

-1.3=-3<1

-2.4=-8<1

.............

\(\Rightarrow\)Nếu x+y=2 thì x.y\(\le\)1

Vũ Minh Tuấn
27 tháng 9 2019 lúc 17:59

Ta có: \(x+y=2\)

\(\Rightarrow x=2-y.\)

Có: \(x.y=\left(2-y\right).y\)

\(\Rightarrow x.y=2y-y^2\)

\(\Rightarrow x.y=-y^2+2y-1+1\)

\(\Rightarrow x.y=-\left(y-1\right)^2+1.\)

\(\left(y-1\right)^2\ge0\) \(\forall y.\)

\(\Rightarrow-\left(y-1\right)^2\le0\) \(\forall y.\)

\(\Rightarrow-\left(y-1\right)^2+1\le1\) \(\forall y.\)

\(\Rightarrow x.y\le1\left(đpcm\right).\)

Chúc bạn học tốt!

Diem Quynh
Xem chi tiết
Oops TV
Xem chi tiết
Khánh Ngọc
10 tháng 8 2020 lúc 10:58

a. Ta có :

\(\left|x+y\right|\le\left|x\right|+\left|y\right|\Leftrightarrow\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2=\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2+2\left|xy\right|\ge x^2+2xy+y^2\)

\(\Leftrightarrow2\left|xy\right|\ge2xy\Leftrightarrow\left|xy\right|\ge xy\) ( luôn đúng )

Dấu "=" xảy ra <=> x và y cùng dấu 

Khách vãng lai đã xóa
dao huyen
Xem chi tiết
dao huyen
2 tháng 4 2017 lúc 20:44

Áp dụng bất đẳng thức cho 2 số dương 2x và 8y ta có:

2x+8y\(\ge\)2\(\sqrt{2x.8y}\)=2\(\sqrt{16xy}\)

Mà x.y=4 => 2x+8y \(\ge\)2\(\sqrt{2x.8y}\)=2\(\sqrt{16.4}\)

=> 2.8=16

Vậy 2x+8y\(\ge\)16

Hồ Thị Lan Anh
Xem chi tiết
Công chúa họ Đinh
14 tháng 5 2016 lúc 14:06

Q(-3)=9x-3b+x ;Q(1)=a+b+c

lấy Q(-3)+Q(1)=10a-2b+2c=2(5a-b+c)=2.0=0(vì 5a-b-c=0)

mà 0=0=)Q(-3)+Q(1)< hoặc =0 =)Q(-3)và Q(1)đối nhau 

mà 2 số đối nhau luôn có 1 số âm và 1 số dương

mà số âm. số dương bằng số âm mà số âm luôn bé hơn 0 nên =)Q(-3).Q(1) < hoặc = 0

Nguyễn bảo ngoc
Xem chi tiết
Yen Nhi
16 tháng 5 2021 lúc 20:13

\(a)\)

\(\frac{x^2+y^2+5}{2}\ge x+2y\)

\(\rightarrow\frac{x^2+y^2+5}{2}-x-2y\ge0\)

\(\rightarrow\frac{x^2+y^2-2x-4y+5}{2}\ge0\)

\(\rightarrow\frac{\left(x^2-2x+1\right)+\left(y^2-4y+4\right)}{2}\ge0\)

\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)

\(\rightarrow\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-2\right)^2\ge0\end{cases}}\)

\(\rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)

Khách vãng lai đã xóa
Yen Nhi
16 tháng 5 2021 lúc 20:21

b)

Áp dụng bất đẳng thức dạng 1/a + 1/b + 4 / a+b

-> 1/a+1 + 1/b+1 ≥ 4/a+b+1+1

Mà ta có: a+b=1

-> 1/a+1 + 1/b+1 ≥ 4/1+1+1 = 4/3

Khách vãng lai đã xóa
Cù Khắc Huy
Xem chi tiết
love karry wang
7 tháng 10 2017 lúc 20:05

 x+y=2 
<=> x=2-y(1) 
giả sử x*y≤1 
<=>(2-y)y≤1 
<=>y^2 - 2y +1≥0 
<=> (y-1)^2≥0 
<=>y≥1(2) 
từ (1),(2)=> x*y≤1 
 

nguyễn nhật duy
7 tháng 10 2017 lúc 20:05

xy = 1 vì :

1 + 1 = 2

vậy xy là 1 nha      

vũ tiền châu
7 tháng 10 2017 lúc 20:05

ta có Áp dụng bđt cô si ta có 

\(x^2+y^2\ge2xy\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow4\ge4xy\Rightarrow1\ge xy\) (ĐPCM)

dấu = xảy ra <=> x=y=1

Nguyễn Nguyệt Minh
Xem chi tiết
Akai Haruma
6 tháng 3 2021 lúc 23:58

Lời giải:

Khi $x-y+z=0\Rightarrow y=x+z$. Thay vào biểu thức $xy+yz-xz$ thì:

$xy+yz-xz=x(x+z)+(x+z)z-xz=x^2+xz+z^2=x^2+\frac{xz}{2}+\frac{xz}{2}+\frac{z^2}{4}+\frac{3}{4}z^2$

$=(x+\frac{z}{2})^2+\frac{3}{4}z^2$

Dễ thấy $(x+\frac{z}{2})^2\geq 0; \frac{3}{4}z^2\geq 0$ với mọi $x,y,z$ nên $xy+yz-xz\geq 0$ 

Ta có đpcm.