So sánh 3√3 với√29 ?
So Sánh: E=3/21+3/22+3/23+3/24+3/25+...+3/29+3/30 với M=3/2
Vì: \(\frac{3}{21}=\frac{3}{21}\)
\(\frac{3}{22}\) < \(\frac{3}{21}\)
\(\frac{3}{23}\) < \(\frac{3}{21}\)
\(\frac{3}{24}\)<\(\frac{3}{21}\)
\(\frac{3}{25}\)< \(\frac{3}{21}\)
.....
\(\frac{2}{29}\)<\(\frac{3}{21}\)
\(\frac{2}{30}\)<\(\frac{3}{21}\)
Nên \(\frac{3}{21}+\frac{3}{22}+\frac{3}{23}+\frac{3}{24}+\frac{3}{25}+...+\frac{3}{29}+\frac{3}{30}\) < \(\frac{3}{21}.10\)
Ta có: \(\frac{3}{21}.10\) = \(\frac{10}{7}\)
Mà \(\frac{10}{7}\) < \(\frac{3}{2}\)
=>\(\frac{3}{21}+\frac{3}{22}+\frac{3}{23}+\frac{3}{24}+\frac{3}{25}+...+\frac{3}{29}+\frac{3}{30}\) < \(\frac{3}{2}\)
Vậy E < M
So sánh \(\sqrt{29}+\sqrt{3}+\sqrt{2003}\)Với 50
\(\sqrt{29}>\sqrt{25}\)= 5
\(\sqrt{3}>1\)
\(\sqrt{2003}>\sqrt{1936}=44\)
Cộng từng vế của ba bất đẳng thức ta được
\(\sqrt{29}+\sqrt{3}+\sqrt{2003}\) > 1+5 +44 = 50
\(\sqrt{29}>\sqrt{25}=5\)
\(\sqrt{3}>\sqrt{1}=1\)
\(\sqrt{2003}>\sqrt{1936}=44\)
\(=>\sqrt{29}+\sqrt{3}+\sqrt{2003}>5+1+44=50\)
so sánh : 230+330+430 với 3.2410
so sánh : 4+ căn 33 và căn 29 + căn 14
Tính từ máy tính casio fx 570 es plus hoặc fx 570 vn plus
Ta thu đc kết quả:
A>B
So sánh : A= 1+2^2/3^2+2^2/5^2+2^2/7^2+....+2^2/2^29 với 3
So sánh:
a) (-3) . 1574 . (-7) . (-11) . (-10) với 0
b) 25 - (-37) . (-29) . (-154) . 2 với 0
a, (-3).1574.(-7).(-11).(-10) > 0
b. 25-(-37).(-29).(-154).2 > 0
Tk mk nha
so sánh phân số sau: -21/29 và 11/-29; 3/14 và 15/28
21/29 > 11/29 => -21/19 < -11/29
3/14 = 6/28 < 15/28
\(-\frac{21}{29}>-\frac{11}{29}\)
\(\frac{3}{14}\Leftrightarrow\frac{6}{28}< \frac{15}{28}\)
Chúc bạn học tốt !
-21/29<11/-29
3/14<15/28
So sánh\(\sqrt{29}+\sqrt{3}+\sqrt{2015}\) với 50
\(\sqrt{29}+\sqrt{3}+\sqrt{2015}>\sqrt{25}+\sqrt{1}+\sqrt{1936}\)\(=5+1+44=50\)
\(\text{Vậy }\sqrt{29}+\sqrt{3}+\sqrt{2015}>50\)
50 bé hơn đó bạn !!! Vì mình không biết bấm căn thức nên mình phải ghi vầy !!!
Cho S = 1 phần 20 + 1 phần 21 + 1 phần 22 + 1 phần 29 . Hãy so sánh S với 1 phần 3
ta thấy \(\frac{1}{20}\)<\(\frac{1}{3}\)
thì \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{20}\)+...+\(\frac{1}{20}\)<\(\frac{1}{3}\)
vậy \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{3}\)
So sánh 1/21+1/22+1/23+1/24+1/25+1/26+1/27+1/28+1/29+1/30 với 1/3
Số số hạng của tổng A là : \(\dfrac{30-21}{1}+1=10\left(sh\right)\)
`=>A=\underbrace{1/21+1/22+...+1/30}_{10sh}>\underbrace{1/30+1/30+1/30+...+1/30}_{10sh}`
`=>A>(1)/(30).10`
`=>A>10/30`
`=>A>1/3`
`=>đpcm`