TImf GTLN của P=\(x+\sqrt{4-x}\)
Timf GTLN
T= \(\dfrac{\text{8x+12}}{\text{x^2+4}}\)
\(T=\dfrac{8x+12}{x^2+4}=\dfrac{-\left(x^2+4\right)+\left(x^2+8x+16\right)}{x^2+4}\)
\(=\dfrac{\left(x+4\right)^2}{x^2+4}-1\text{≥}-1\)
Vậy Min\(=-1\text{⇔}x=-4\)
\(T=\dfrac{8x+12}{x^2+4}=\dfrac{4\left(x^2+4\right)-4\left(x^2-2x+1\right)}{x^2+4}\)
\(=-\dfrac{4\left(x-1\right)^2}{x^2+4}+4\text{≤}4\)
\(Max=4\)⇔\(x=1\)
Ta có: \(T=\dfrac{8x+12}{x^2+4}=\dfrac{4\left(x^2+4\right)-4\left(x^2-2x+1\right)}{x^2+4}=4-\dfrac{4\left(x-1\right)^2}{x^2+4}\le4\)
Dấu "=" xảy ra \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Cho x+y=4. Timf GTNN hoặc GTLN của biểu thức:
\(A= xy+ {5x \over2} + {3y \over2}\)
Timf giá trị lớn nhất của biểu thức
\(P=\frac{7-3\sqrt{x}}{\sqrt{x}+4}\)
timf gtln
B=4x-x^2
B = 4x - x2
B = -(x2 - 4x)
B = -(x2 - 2.2x + 4 - 4)
B = -(x - 2)2 + 4
Vi -(x - 2)2 <= 0 voi moi x
=> -(x - 2)2 + 4 <= 4
Dau "=" xay ra <=> x - 2 = 0
<=> x = 2
Vay GTLN cua B la 4 khi va chi khi x = 2
Tìm GTLN, GTNN của \(P=\dfrac{x+4}{4\sqrt{x}}\)
Tìm GTLN, GTNN của \(P=\dfrac{x+3}{2\left(\sqrt{x}+1\right)}\) (x ≥ 0)
Tìm GTNN, GTLN của \(P=\dfrac{x-4}{\sqrt{x}+1}\)
Tất cả 3 bài này đều chung một dạng, bậc tử lớn hơn bậc mẫu nên đều không tồn tại GTLN mà chỉ tồn tại GTNN. Cách tìm thường là chia tử cho mẫu rồi khéo léo thêm bớt để sử dụng BĐT Cô-si
a) \(P=\dfrac{x+4}{4\sqrt{x}}=\dfrac{\sqrt{x}}{4}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\dfrac{\sqrt{x}}{4}\dfrac{1}{\sqrt{x}}}=2.\dfrac{1}{2}=1\)
\(\Rightarrow P_{min}=1\) khi \(\dfrac{\sqrt{x}}{4}=\dfrac{1}{\sqrt{x}}\Leftrightarrow x=4\)
b) \(P=\dfrac{x+3}{2\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{2}+\dfrac{2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{2}+\dfrac{2}{\sqrt{x}+1}-1\)
\(\Rightarrow P\ge2\sqrt{\dfrac{\left(\sqrt{x}+1\right)}{2}\dfrac{2}{\left(\sqrt{x}+1\right)}}-1=2-1=1\)
\(\Rightarrow P_{min}=1\) khi \(\dfrac{\sqrt{x}+1}{2}=\dfrac{2}{\sqrt{x}+1}\Leftrightarrow x=1\)
c)ĐKXĐ: \(x\ge0\Rightarrow\) \(P=\dfrac{x-4}{\sqrt{x}+1}=\sqrt{x}-1-\dfrac{3}{\sqrt{x}+1}\)
\(P_{min}\) khi \(\dfrac{3}{\sqrt{x}+1}\) đạt max \(\Rightarrow\sqrt{x}+1\) đạt min, mà \(\sqrt{x}+1\ge1\) \(\forall x\ge0\) , dấu "=" xảy ra khi \(x=0\)
\(\Rightarrow P_{min}=-4\) khi \(x=0\)
\(\dfrac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}-1\)
a, tìm ĐKXĐ và rút gọn biểu thức đã cho
b, Timf điều kiện của x để P<0
a) \(ĐK:x\ge0,x\ne1\)
\(=\dfrac{3x+3\sqrt{x}-3-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3x+3\sqrt{x}-3-x+4+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2x+4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)
b) \(P=\dfrac{2\sqrt{x}}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\)
Kết hợp với đk:
\(\Rightarrow0\le x< 1\)
Cho biểu thức \(A=\frac{2006-x}{6-x}\)timf giá trị nguyên của x để A đạt GTLN . Tìm giá trị lớn nhất đó
Giúp mình với :
a)Tìm GTNN của A = \(\left|x^2-x+1\right|+\left|x^2-x-2\right|\)
b ) tìm GTNLN của D =\(\frac{x+2}{\left|x\right|}\)với x khác 0 và x thuộc Z
c) tìm GTLN của F=\(\frac{7x-8}{2x-3}\)với x thuộc N
d) Timf GTNN của G=\(x\left(x+1\right)+x+2\)
e) Tìm GTLN của J = \(x^4+2x^2-7\)
f) Tìm GTLN của biểu thức N = \(\left(x+2\right)^2-4x+2\)
G ) tìm GTLN của T= \(4\left(3-\left|x-1\right|\right)+\left|1-x\right|\)
A=\(\dfrac{\sqrt{X}+1}{\sqrt{X}-1}\)
Timf x nguyên để A nguyên
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{2}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\\ A\in Z\Rightarrow1+\dfrac{2}{\sqrt{x}-1}\in Z\Rightarrow\dfrac{2}{\sqrt{x}-1}\in Z\\ \Leftrightarrow\left(\sqrt{x}-1\right)\inƯ\left(2\right)\\ \Leftrightarrow\left(\sqrt{x}-1\right)\in\left\{2;1;-1;-2\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{3;2;0;-1\right\}\\ \Leftrightarrow x\in\left\{9;4;0\right\}\)
Vậy \(x\in\left\{9;4;0\right\}\)