Bai 3:Cho hình vẽ dưới đây. Chứmg minh:
a) Ax // By
b) By // Cz
Cho ax+by+cz=0; a+b+c=0,01 và ax^2+by^2+cz^2#0
Tính gt phân thức P=ax^2+by^2+cz^2 / ab(x-y)^2+bc(y-z)^2+ca(z-x)^2 ?
Cho a+b+c=0, x+y+z=0, a/x+b/y+c/z=0. CMR: \(ax^2+by^2+cz^2=0\)
Ta có \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow ayz+bzx+cxy=0\).
Do đó: \(ax^2+by^2+cz^2=\left(ax+by+cz\right)\left(x+y+z\right)-axy-axz-byz-byx-czx-czy=0-xy\left(a+b\right)-yz\left(b+c\right)-zx\left(c+a\right)=0+xyc+yza+zxb=0\).
cho a+b+c=0
x+y+z=0
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
cm ax2+by2+cz2=0
Cho x=by+cz; y= ax+cz; z= ax+by và x+y+z khác 0
tính p= 1/1+a +1/1+b +1/1+c
Với a, b, c khác -1 thì x + y + z khác 0.
Từ đề bài ta có: y + z = ax + cz + ax + by
<=> 2ax = y + z - x
--> a = (y + z - x)/(2x) --> a + 1 = (x + y + z)/(2x)
--> 1/(1 + a) = 2x/(x + y + z)
tương tự: 1/(1 + b) = 2y/(x + y + z)
1/(1 + c) = 2z/(x + y + z)
--> 1/(1 + a) + 1/(1 + b) + 1/(1 + c) = (2x + 2y + 2z)/(x + y + z) = 2
Cho các số a,b,c,x,y,z t/m:x=by+cz ;y=cz+ax ;z=ax+by và a,b,c khác 0.Tính M=1/1+a+1/1+b+1/1+c
Bài 6: Cho hình vẽ bên. Biết Ax // By, xAB = 120°, BCz = 120°.
a) Tính số đo góc ABy?
b) Các cặp đường thẳng nào song song với nhau ?Vì sao ?
\(a,Ax//By\Rightarrow\widehat{ABy}=\widehat{BAx}=120^0\left(so.le.trong\right)\\ b,\widehat{ABy}=\widehat{BCz}\left(=120^0\right)\)
Mà 2 góc này ở vị trí đồng vị nên \(By//Cz\)
Mà \(By//Ax\) nên \(Cz//Ax\)
Vậy có 3 cặp tia song song là \(Ax//By;By//Cz;Cz//Ax\)
cho a+b+c = x+y+z = a/x + b/y + c/z = 0 chung minh ax^2 +by^2+cz^2 = 0
Do x + y + z = 0 nên
x = - (y + z) ; y = - (x + z) ; z = - (x + y)
=> x2 = (y + z)2 ; y2 = (x + z)2 ; z2 = (x + y)2
=> ax2 + by2 + cz2 = a(y2 + 2yz + z2) + b(x2 + 2xz + z2) + c(x2 + 2xy + y2) = x2(b + c) + y2(a + c) + z2(a + b) + 2(ayz + bxz + cxy) (1)
Thay a = - (b + c) ; b = - (a + c) ; c = - (a + b) (Do a + b + c = 0 ) và ayz+bxz+cxy=0 (do a/x+b/y+c/z=0) vào (1) ta được ax2 + by2 + cz2 = - (ax2 + by2 + cz2)
=> ax2 + by2 + cz2 = 0
Cho x,y,z là các số khác 0 và x + y = z khác 0 thoả mãn x = by + cz; y = ax + cz; z = ax + by. Tính giá trị biểu thức A = \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\)
Ta có:\(\left\{{}\begin{matrix}x=by+cz\\y=ax+cz\\z=ax+by\end{matrix}\right.\)
\(\Leftrightarrow x+y+z=2\left(ax+by+cz\right)\)
Thay \(x=by+cz\) vào biểu thức ta được:
\(x+y+z=2\left(ax+x\right)=2x\left(a+1\right)\)
\(\Leftrightarrow\dfrac{1}{1+a}=\dfrac{2x}{2x\left(1+a\right)}=\dfrac{2x}{x+y+z}\)
CMTT và cộng theo vế suy ra A=2
Cho ax+by+cz=0; a+b+c=\(\dfrac{1}{100}\); ax2+by2+cz2 khác 0. Tính\(S=\dfrac{\text{ax^2+by^2+cz^2}}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2}\)