so tu nhien thoa nam 3n +8 chia het cho n+2
tim tat ca cac so tu nhien n thoa man : 3n + 9 chia het cho n+2
3n + 9 ⋮ n + 2
3n + 6 + 3 ⋮ n + 2
3.(n + 2) + 3 ⋮ n + 2
3 ⋮ n + 2
n + 2 \(\in\) Ư(3) = {-3; -1; 1; 3}
n \(\in\) {-5; -3; -1; 1}
n \(\in\) {1}
so tu nhien n sao cho 3n+8 chia het cho n+2
tim so tu nhien n biet 3n+8 chia het cho n+2
\(\frac{3n+8}{n+2}\)
\(\frac{3n+6+2}{n+2}\)
\(\frac{3\left(n+2\right)+2}{n+2}\)
\(3+\frac{2}{n+2}\)
n + 2 \(\in\)Ư(2).
n + 2 \(\in\){ 1;2 }
\(\Rightarrow\)n + 2 = 2.
Vậy n = 0.
\(\frac{3n+8}{n+2}=\frac{3\left(n+2\right)+2}{n+2}=\frac{3\left(n+2\right)}{n+2}+\frac{2}{n+2}=3+\frac{2}{n+2}\in Z\)
=>2 chia hết n+2
=>n+2 thuộc Ư(2)={1;-1;2;-2}
=>n+2 thuộc {1;-1;2;-2}
=>n thuộc {-1;-3;0;-4}
Tim so tu nhien n de (3n+8) chia het cho (n+2) la
3n + 8 chia hết cho n + 2
3n + 6 + 2 chia hết cho n + 2
2 chia hết cho n + 2
U(2) = {1;2}
n là số tự nhiên => n = 0
CMR:
a,Trong 3 so tu nhien bat ki bao gio cung chon duoc 2 so co hieu chia het cho 2
b,Trong 6 so tu nhien bat ki bao gio cung chon duoc hai so co hieu chia het cho 5
c, A=(n+1).(3n+2).3n chia het cho 2 voi moi n
1.chung minh rang:3n.(n+1)chia het cho 6(n thuoc N
2.cmr 5n.(n+1).(n+2) chia het cho 30(n thuocN)
3.tim so tu nhien n de 7.(n-1) chia het cho 4
4.tim so tu nhien n de 5.( n-2) chia het cho 3
tim so tu nhien n thoa man de 2^n-1 chia het cho 259
tim tat ca cac so tu nhien n thoa man 2n+13 chia het cho n-2 ?
2n + 13 ⋮ n - 2 ( n \(\in\) N; n ≠ 2)
2n - 4 + 17 ⋮ n - 2
2.(n - 2) + 17 ⋮ n - 2
17 ⋮ n - 2
n - 2\(\in\) Ư(17) = {-17; -1; 1; 17}
n \(\in\) {-15; 1; 3; 15}
tim cac so tu nhien n thoa man : (n^2+n+4) chia het cho (n+1)
n2 + n + 4 chia hết cho n + 1
=> n(n + 1) + 4 chia hết cho n + 1
Vì n(n + 1) chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {1;2;4}
n + 1 | 1 | 2 | 4 |
n | 0 | 1 | 3 |
Vậy n thuộc {0;1;3}