Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bạch thục quyên
Xem chi tiết
Nguyễn Linh Chi
22 tháng 11 2019 lúc 22:37

Câu hỏi của Tiểu thư họ Vũ - Toán lớp 9 - Học toán với OnlineMath

Khách vãng lai đã xóa
Như Dương
Xem chi tiết
Như Dương
29 tháng 8 2021 lúc 10:15

ai giúp em bài1 và phần b bài 2 với ạ

 

Thuhuyen Le
Xem chi tiết
Vũ Thị NGọc ANh
Xem chi tiết
Cô Hoàng Huyền
22 tháng 9 2017 lúc 11:03

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).

Nguyễn Thị Cẩm Ly
Xem chi tiết
Aoi Ogata
28 tháng 1 2018 lúc 21:12

bạn ơi đề khó nhìn vậy  

Nguyễn Thị Cẩm Ly
28 tháng 1 2018 lúc 21:51
bạn giúp mk vs đk k bạn
Nguyễn Như Quỳnh
Xem chi tiết
Lê Song Phương
28 tháng 6 2023 lúc 7:25

a) \(x^2-3xy+3y^2=3y\)

Rõ ràng \(x⋮y\) nên đặt \(x=ky\left(k\inℤ\right)\). Pt trở thành:

\(k^2y^2-3ky^2+3y^2=3y\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\k^2y-3ky+3y=3\end{matrix}\right.\).

Khi \(y=0\) \(\Rightarrow x=0\).

Khi \(k^2y-3ky+3y=3\)

\(\Leftrightarrow y\left(k^2-3k+3\right)=3\)

Ta lập bảng giá trị:

\(y\) 1 3 -1 -3
\(k^2-3k+3\) 3 1 -3 -1
\(k\) 0 hoặc 3 1 hoặc 2 vô nghiệm vô nghiệm
\(x\) 0 (loại) hoặc 3 (nhận) 3 (nhận) hoặc 6 (nhận)    

Vậy pt đã cho có các nghiệm \(\left(0;0\right);\left(3;1\right);\left(3;3\right);\left(6;3\right)\)

b) \(x^2-2xy+5y^2=y+1\)

\(\Leftrightarrow x^2-2yx+5y^2-y-1=0\)

\(\Delta'=\left(-y\right)^2-\left(5y^2-y-1\right)\) \(=-4y^2+y+1\)

Để pt đã cho có nghiệm thì \(-4y^2+y+1\ge0\), giải bpt thu được \(\dfrac{1-\sqrt{17}}{8}\le y\le\dfrac{1+\sqrt{17}}{8}\). Mà lại có \(-1< \dfrac{1-\sqrt{17}}{8}< 0< \dfrac{1+\sqrt{17}}{8}< 1\) nên suy ra \(y=0\). Từ đó tìm được \(x=\pm1\). Vậy pt đã cho có các nghiệm \(\left(1;0\right);\left(-1;0\right)\)

Trần Minh Nhật
Xem chi tiết
zZz Cool Kid_new zZz
27 tháng 7 2020 lúc 8:17

\(x^2+y^2+3xy=x^2y^2\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+xy=x^2y^2\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy-1\right)\)

Do VT là số chính phương nên VP là số chính phương, để VP là số chính phương thì một trong 2 số bằng 0.

Dễ nhận ra x=y=0 là nghiệm cần tìm

Khách vãng lai đã xóa
Tiểu thư họ Vũ
Xem chi tiết
Nguyễn Nhật Minh
8 tháng 2 2019 lúc 23:47

Phương trình tương đương với:

\(6x+6y+48=9xy\)\(\Leftrightarrow9xy-6x-6y=48\)\(\Leftrightarrow9xy-6x-6y+4=52\)\(\Leftrightarrow3x\left(3y-2\right)-2\left(3y-2\right)=52\)\(\Leftrightarrow\left(3x-2\right)\left(3y-2\right)=52.\)

Do \(x,y\inℕ^∗\)nên \(3x-2;3y-2\ge1\). Do đó 3x - 2 và 3y - 2 là các ước nguyên dương của 52 gồm 1;4;13;52.

Do \(x,y\inℕ^∗\)nên 3x - 2; 3y - 2 chia 3 dư 1. Do vai trò của x và y như nhau nên giả sử x \(\le\)y, ta có 2 trường hợp sau:

\(\hept{\begin{cases}3x-2=1\\3y-2=52\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=18\end{cases}.}}\)\(\hept{\begin{cases}3x-2=4\\3y-2=13\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}.}}\)

Đảo vai trò của x và y cho nhau ta có 4 cặp số (x;y) nguyên dương thoả mãn đề bài: (1;18),(18;1),(2;5),(5;2).

Hảải Phongg
Xem chi tiết
Luong Ngoc Quynh Nhu
22 tháng 1 2017 lúc 11:47

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

Hảải Phongg
22 tháng 1 2017 lúc 20:00

giải zõ hộ