Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Na Na
Xem chi tiết
Earth-K-391
Xem chi tiết

Giải:

\(S=\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{98}+\dfrac{1}{99}\) 

\(S=\left(\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{74}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{98}+\dfrac{1}{99}\right)\) 

\(\Rightarrow S>\left(\dfrac{1}{50}+\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{75}+\dfrac{1}{75}\right)\) 

\(\Rightarrow S>\dfrac{1}{2}+\dfrac{1}{3}>\dfrac{1}{2}\) 

\(\Rightarrow S>\dfrac{1}{2}\left(đpcm\right)\) 

Quynh Anh
19 tháng 5 2021 lúc 9:45

Ta có:S=1/50+1/51+1/52+...+1/99

S>1/50+1/50+1/50+....+1/50(50 số hạng)

S>1/50x50

S>1>1/2

=>S>1/2

I love dễ thương
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
3 tháng 3 2017 lúc 20:10

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}\)

    \(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{43}-\frac{1}{46}\)

      \(=1-\frac{1}{46}< 1\)

Vậy \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}< 1\)

duy tien dragon city
Xem chi tiết
Bui Dinh Quang
Xem chi tiết
❤Firei_Star❤
Xem chi tiết
Nguyễn Ngọc Thuỳ Vy
Xem chi tiết
Đinh Đức Hùng
13 tháng 2 2016 lúc 15:36

Chứng tỏ rằng:
         $\frac{k}{n.(n + k)}$ = $\frac{1}{n}$ - $\frac{1}{n + k}

 

๖ۣۜßất๖ۣۜÇần๖
Xem chi tiết
T.Ps
2 tháng 8 2019 lúc 15:26

#)Giải :

Ta có : \(\frac{101}{2}.\frac{102}{2}.\frac{103}{2}.....\frac{200}{2}=\frac{101.102.103.....200}{2^{100}}=\frac{\left(101.102.103.....200\right)\left(1.2.3.....100\right)}{2^{100}\left(1.2.3.....100\right)}\)

\(=\frac{1.2.3.....200}{\left(2.1\right)\left(2.2\right)\left(2.3\right)...\left(2.100\right)}=\frac{\left(1.3.5.....99\right)\left(2.4.6.....100\right)}{2.4.6.....200}=1.3.5.....99\left(đpcm\right)\)

ice ❅❅❅❅❅❅ dark
2 tháng 8 2019 lúc 15:39

Ta có : 1.3.5.7.....199 = \(\frac{\left(1.3.5.7.....199\right).\left(2.4.6.8.....200\right)}{2.4.6.8.....200}=\frac{1.2.3.4.5.....199.200}{\left(1.2\right).\left(2.2\right).\left(3.2\right).....\left(100.2\right)}=\frac{1.2.3.4.5.....199.200}{2^{100}.1.2.3.....100}=\frac{101.102.103.....200}{2^{100}}\)\(=\frac{101}{2}.\frac{102}{2}\frac{103}{2}.....\frac{200}{2}\)\( \left(ĐPCM\right)\)

Rosie
Xem chi tiết
Vũ Minh Tuấn
6 tháng 2 2020 lúc 12:21

Ta có:

\(A=\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}\)

\(\Rightarrow A=9.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)

\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)

\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)

\(\Rightarrow A=9.\left(\frac{1}{3}-\frac{1}{783}\right)\)

\(\Rightarrow A=9.\frac{1}{3}-9.\frac{1}{783}\)

\(\Rightarrow A=3-\frac{1}{87}\)

\(3-\frac{1}{87}< 3.\)

\(\Rightarrow A< 3\left(đpcm\right).\)

Chúc bạn học tốt!

Khách vãng lai đã xóa