Cho a,b,c là độ dài 3 cạnh tam giác thỏa mãn: a+b+c=1
CMR: \(a^2+b^2+c^2< \dfrac{1}{2}\)
cho a, b ,c là độ dài ba cạnh của một tam giác và thỏa mãn hệ thức a + b + c = 1. CMR a2 + b2 + c2 < 1/2
CMR : Nếu a,b,c là độ dài của các cạnh của 1 tam giác thỏa mãn điều kiện a^2 + b^2 > c^2 thì c là độ dài của cạnh nhỏ nhất.
À tiện thể hỏi ai chơi mope.io ko :'>
cho a, b, c là các độ dài thỏa mãn: \(\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}>1\)
cmr: a, b, c là độ dài các cạnh của tam giác
Bài 1 : Cho a,b,c,d là các số nguyên thỏa mãn : a + b = c + d
CMR : M = \(a^2+b^2+c^2+d^2\) luôn là tổng của 3 SCP |
Bài 2 : Cho a , b , c là độ dài 3 cạnh 1 tam giác thỏa mãn
(a+b)(b+c)(c+a) = 8abc
Mong mọi người giúp mình , mình cần rất gấp .
Câu 2 (Bổ Sung) : Chứng minh tam giác đã cho là tam giác đều
cho a, b ,c là độ dài ba cạnh của một tam giác và thỏa mãn hệ thức a + b + c = 1. CMR a2 + b2 + c2 < 1/2
Theo bđt tam giác, ta có : \(\begin{cases}a+b>c\\b+c>a\\a+c>b\end{cases}\) \(\Leftrightarrow\begin{cases}bc+ac>c^2\\ab+ac>a^2\\ab+bc>b^2\end{cases}\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)< a^2+b^2+c^2+2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)< \left(a+b+c\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)< 1\)
\(\Leftrightarrow a^2+b^2+c^2< \frac{1}{2}\)
Cho a,b,c là độ dài 3 cạnh 1 tam giác thỏa mãn: a+2b=abc
Tìm min \(P=\dfrac{3}{b+c-a}+\dfrac{5}{a+c-b}+\dfrac{4}{a+b-c}\)
cho a,b,c là độ dài 3 cạnh của 1 tam giác thỏa mãn abc=b+2c
CMR:\(\dfrac{3}{b+c-a}+\dfrac{4}{c+a-b}+\dfrac{5}{a+b-c}\ge4\sqrt{3}\)
Ta có: \(abc=b+2c\)
\(\Rightarrow a=\dfrac{b+2c}{bc}\)\(\Rightarrow a=\dfrac{1}{c}+\dfrac{2}{b}\)
Áp dụng bất đẳng thức: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
Ta có: \(\dfrac{3}{b+c-a}+\dfrac{4}{c+a-b}+\dfrac{5}{a+b-c}\)
\(=\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}+2\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+b-c}\right)+3\left(\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)\ge\dfrac{4}{b+c-a+c+a-b}+2.\dfrac{4}{b+c-a+a+b-c}+3.\dfrac{4}{c+a-b+a+b-c}=\dfrac{4}{2c}+2.\dfrac{4}{2b}+3.\dfrac{4}{2a}=\dfrac{2}{c}+\dfrac{4}{b}+\dfrac{6}{a}=2\left(\dfrac{1}{c}+\dfrac{2}{b}+\dfrac{3}{a}\right)=2\left(a+\dfrac{3}{a}\right)\ge2.2\sqrt{\dfrac{a.3}{a}}=4\sqrt{3}\)
(bất đẳng thức Cauchy cho 2 số dương)
\(ĐTXR\Leftrightarrow a=b=c=\sqrt{3}\)
cho a,b,c là các số dương thỏa mãn (a^2 + b ^2 + c^2 )^2 > 2(a^2 + b^2 + c^2) chứng minh rằng a,b,c là độ dài 3 cạnh của 1 tam giác
CMR: a,b,c là độ dài 3 cạnh tam giác thỏa mãn biết
a+b=c thì ta có a^2+b^2+c^2+2ab-ac-bc=0
cho a,b,c là độ dài các cạnh cua tam giác thỏa mãn
(a+b-2c)2+(b+c-2a)2+(c+a-2b)2=(a-b)2+(b-c)2+(c-a)2
hỏi tam giác đó là tam giác gì
Ta có : \(\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(\Leftrightarrow a^2+b^2+4c^2+2ab-4bc-4ac+b^2+c^2+4a^2+2bc-4ca-4ab+c^2+a^2+4b^2+2ac-4bc-4ab=...\)
\(\Leftrightarrow6a^2+6b^2+6c^2-6\left(ab+bc+ca\right)=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\)
\(\Leftrightarrow6a^2+6b^2+6c^2-6\left(ab+bc+ca\right)-a^2+2ab-b^2-b^2+2bc-c^2-c^2+2ca-a^2=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow a=b=c\)
<=> Tam giác đó là tam giác đều .
Vậy ...