B = 1+ 1/2 ( 1+2) + 1/3 ( 1+2+3) + 1/4 ( 1+2+3+4) +...+ 1/20( 1+ 2+3+...+ 20)
TÍNH: B= 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+4+...+20)
Tính B=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+4+...+20)
Ta có:
\(B=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+...+20\right)\)
\(=1+\dfrac{1}{2}.\dfrac{2\left(2+1\right)}{2}+\dfrac{1}{3}.\dfrac{3\left(3+1\right)}{2}+...+\dfrac{1}{20}.\dfrac{20\left(20+1\right)}{2}\)
\(=\dfrac{2}{2}+\dfrac{2+1}{2}+\dfrac{3+1}{2}+...+\dfrac{20+1}{2}\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{20}{2}\)
\(=\dfrac{2+3+4+...+20}{2}=\dfrac{\dfrac{20\left(20+1\right)}{2}-1}{2}\)
\(=\dfrac{209}{2}\)
Vậy \(B=\dfrac{209}{2}\)
Tính B= 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+...+20)
Tính B=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+...+20)
tính B=1+1/2*(1+2)+1/3*(1+2+3)*1/4*(1+2+3+4)+...+1/20*(1+2+3+...+20)
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+...+\frac{1}{20}.\frac{20\left(20+1\right)}{2}\)
\(=\frac{2}{2}+\frac{2+1}{2}+\frac{3+1}{2}+...+\frac{20+1}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{20}{2}\)
\(=\frac{2+3+4+...+20}{2}=\frac{\frac{20\left(20+1\right)}{2}-1}{2}=\frac{209}{2}\)
tính B= 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+...+20)
Tinh B=1+1/2*(1+2)+1/3*(1+2+3)+1/4*91+2+3+4)+.........+1/20*(1+2+3+...+20)
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+...+\frac{1}{20}.20.21:2\)
=\(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}=\frac{2+3+4+...+21}{2}=\frac{230}{2}=115\)
tính hợp lý
B=1+1/2.(1+2)+1/3.(1+2+3)+1/4.(1+2+3+4)+....+1/20.(1+2+3+...+20)
B=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3...+20) . Tinh B gium minh voi minh cam on .