\(\left(\frac{x}{x^2-64}+\frac{x-8}{x^2+8x}\right):\frac{2x-6}{x^2+8x}+\frac{x}{8-x}.\)
Tính giúp mik với, mai kt r ạ TT
Giải phương trình:
1) \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
2) \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
3)\(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
4)\(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
5)\(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
6)\(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)
7)\(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)
8)\(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
giải giúp mik với ạ
1. \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
\(\Leftrightarrow35x-5+60x=96-6x\)
\(\Leftrightarrow95x-5=96-6x\)
\(\Leftrightarrow95x+6x=96+5\)
\(\Leftrightarrow101x=101\)
\(\Leftrightarrow x=1\)
2. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
\(\Leftrightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)
\(\Leftrightarrow30x+9=36+24+32x\)
\(\Leftrightarrow30x+9=32x+60\)
\(\Leftrightarrow30x-32x=60-9\)
\(\Leftrightarrow-2x=51\)
\(\Leftrightarrow x=-\frac{51}{2}\)
3. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
\(\Leftrightarrow8x-3-2\left(3x-2\right)=2\left(2x-1\right)+x+3\)
\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)
\(\Leftrightarrow2x+1=5x+1\)
\(\Leftrightarrow2x=5x\)
\(\Leftrightarrow x=0\)
4) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
=> \(\frac{9-3x}{8}+\frac{10-2x}{3}=\frac{1-x}{2}-\frac{2}{1}\)
=> \(\frac{3\left(9-3x\right)}{24}+\frac{8\left(10-2x\right)}{24}=\frac{12\left(1-x\right)}{24}-\frac{48}{24}\)
=> \(\frac{27-9x}{24}+\frac{80-16x}{24}=\frac{12-12x}{24}-\frac{48}{24}\)
=> \(\frac{27-9x+80-16x}{24}=\frac{12-12x-48}{24}\)
=> 27 - 9x + 80 - 16x = 12 - 12x - 48
=> 27 - 9x + 80 - 16x - 12 + 12x + 48 = 0
=> (27 + 80 - 12 + 48) + (-9x - 16x + 12x) = 0
=> 143 - 13x = 0
=> 13x = 143
=> x = 11
5) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
=> \(\frac{2x-6}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
=> \(\frac{3\left(2x-6\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)
=> \(\frac{6x-18}{21}+\frac{7x-35}{21}-\frac{13x+4}{21}=0\)
=> \(\frac{6x-18+7x-35-13x-4}{21}=0\)
=> 6x - 18 + 7x - 35 - 13x - 4 = 0
=> (6x + 7x - 13x) + (-18 - 35 - 4) = 0
=> -57 = 0(vô nghiệm)
6) \(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)
=> \(\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)
=> \(\frac{2\left(6x+5\right)}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{2\left(2x+1\right)}{4}\)
=> \(\frac{12x+10}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{4x+2}{4}\)
=> \(\frac{12x+10-\left(10x+3\right)}{4}=\frac{8x+4x+2}{4}\)
=> \(\frac{12x+10-10x-3}{4}=\frac{12x+2}{4}\)
=> \(12x+10-10x-3=12x+2\)
=> \(2x+10-3=12x+2\)
=> 2x + 10 - 3 - 12x - 2 = 0
=> (2x - 12x) + (10 - 3 - 2) = 0
=> -10x + 5 = 0
=> -10x = -5
=> x = 1/2
7) \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)
=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{x+7}{15}=0\)
=> \(\frac{6x-3}{15}-\frac{5x-10}{15}-\frac{x+7}{15}=0\)
=> \(\frac{6x-3-\left(5x-10\right)-\left(x+7\right)}{15}=0\)
=> 6x - 3 - 5x + 10 - x - 7 = 0
=> (6x - 5x - x) + (-3 + 10 - 7) = 0
=> 0x + 0 = 0
=> 0x = 0
=> x tùy ý
Bài 8 tự làm nhé
Giải các phương trình,bất phương trình:
c,\(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
d,\(\frac{4}{-25x^2+20x-3}=\frac{3}{5x-1}-\frac{2}{5x-3}\)
e,\(\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}-\frac{2}{x^2-4x+3}=0\)
g,\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)
h,\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
i,\(\left(2x-5\right)^2-\left(x+2\right)^2=0\)
k,\(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)
l,\(\left(x^2-2x+1\right)-4=0\)
m,\(4x^2+4x++1=x^2\)
Xin đáy ai giúp mình đi
Cho biểu thức: D=\(\left(\frac{x}{x+2}+\frac{8x+8}{x^2+2x}-\frac{x+2}{x}\right):\left(\frac{x^2-x+3}{x^2+2x}+\frac{1}{x}\right)\)
Tìm giá trị nguyên của x để D nhận giá trị nguyên
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(D=\left(\frac{x}{x+2}+\frac{8x+8}{x^2+2x}-\frac{x+2}{x}\right):\left(\frac{x^2-x+3}{x^2+2x}+\frac{1}{x}\right)\)
\(\Leftrightarrow D=\left(\frac{x}{x+2}+\frac{8x+8}{x\left(x+2\right)}-\frac{x+2}{x}\right):\frac{x^2-x+3+x+2}{x\left(x+2\right)}\)
\(\Leftrightarrow D=\frac{x^2+8x+8-\left(x+2\right)^2}{x\left(x+2\right)}:\frac{x^2+5}{x\left(x+2\right)}\)
\(\Leftrightarrow D=\frac{\left(x^2+8x+8-x^2-4x-4\right)x\left(x+2\right)}{x\left(x+2\right)\left(x^2+5\right)}\)
\(\Leftrightarrow D=\frac{4x+4}{x^2+5}\)
Để \(D\inℤ\)
\(\Leftrightarrow4x+4⋮x^2+5\)
\(\Leftrightarrow4x^2+4x⋮x^2+5\)
\(\Leftrightarrow4\left(x^2+5\right)-16x⋮x^2+5\)
\(\Leftrightarrow16x⋮x^2+5\)
\(\Leftrightarrow256\left(x^2+5\right)-1280⋮x^2+5\)
\(\Leftrightarrow1280⋮x^2+5\)
\(\Leftrightarrow x^2+5\inƯ\left(1280\right)\)
Đoạn này bạn làm nốt nhé
bài mik sai từ đoạn \(4x^2+4x⋮x^2+5\)
k tương đương đc với \(4\left(x^2+5\right)-16x⋮x^2+5\)nhaaa !!
MIk rút gọn đc D thôi :)) Phần còn lại chắc cậu tự làm nha
Kết quả rút gọn của bạn Minh đúng rồi nhé, mình làm tiếp nha !
Để D là số nguyên
\(\Leftrightarrow4x+4⋮x^2+5\)
\(\Rightarrow\left(4x+4\right)\left(4x-4\right)⋮x^2+5\)
\(\Leftrightarrow16x^2-16⋮x^2+5\)
\(\Leftrightarrow16\left(x^2+5\right)-96⋮x^2+5\)
\(\Leftrightarrow96⋮x^2+5\)
\(\Leftrightarrow x^2+5\inƯ\left(96\right)\)
\(\Leftrightarrow x^2+5\in\left\{\pm1,\pm2,\pm3,\pm4,\pm6,\pm8,\pm12,\pm16,\pm24,\pm32,\pm48,\pm96\right\}\)
Lại có : \(x^2+5\ge5>0\)
Do đó \(x^2+5\in\left\{6,8,12,16,24,32,48,96\right\}\)
\(\Leftrightarrow x^2\in\left\{1,3,7,11,19,27,43,91\right\}\)
Mà \(x^2\) là số chính phương và x là số nguyên
\(\Rightarrow x^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\) ( thỏa mãn ĐKXĐ )
Thử lại ta thấy \(x=-1\) thỏa mãn D là số nguyên.
Vậy : \(x=-1\) để D nhận giá trị nguyên.
Tìm điều kiện xác định rồi giải các phương trình sau:
a) \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\)
b) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
c) \(\frac{8x^2}{3\left(1-4x^2\right)}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
d) \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
Help me!
a) ĐKXĐ: x khác +2
\(\frac{x-2}{2+x}-\frac{3}{x-2}-\frac{2\left(x-11\right)}{x^2-4}\)
<=> \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)
<=> (x - 2)^2 - 3(2 + x) = 2(x - 11)
<=> x^2 - 4x + 4 - 6 - 3x = 2x - 22
<=> x^2 - 7x - 2 = 2x - 22
<=> x^2 - 7x - 2 - 2x + 22 = 0
<=> x^2 - 9x + 20 = 0
<=> (x - 4)(x - 5) = 0
<=> x - 4 = 0 hoặc x - 5 = 0
<=> x = 4 hoặc x = 5
làm nốt đi
bài 1 giải phương trình
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
Giải:
a) ⇔⇔ 9x2 + 12x + 4 - 18x + 12 = 9x2 ⇔ 9x2 + 12x + 4 - 18x + 12 - 9x2 = 0
⇔ 16 + 6x = 0 ⇔ 2(8 + 3x) = 0 ⇔ 8 + 3x = 0 ⇔ x = \(\frac{-8}{3}\)
Vậy nghiệm của phương trình là x = \(\frac{-8}{3}\) .
b) \(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\text{⇔ }\frac{-3}{1-5x}+\frac{-3}{5x-3}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
⇔ \(\frac{9-15x}{\left(1-5x\right)\left(5x-3\right)}+\frac{15x-3}{\left(1-5x\right)\left(5x-3\right)}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\) ⇔ 9 - 15x + 15x - 3 = 4
⇔ 8 = 4 ( vô lí)
Vậy phương trình trên vô nghiệm.
Mình chỉ làm 2 câu a, b thôi nhé! Các bài tập này cách làm giống nhau, bạn tự hoàn thành những bài còn lại nhé!
1. giải pt
a. 5(x-3)-4=2(x-1)+7
b. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
c.\(\frac{2\left(x+5\right)}{3}+\frac{x+12}{2}-\frac{5\left(x-2\right)}{6}=\frac{x}{3}+11\)
d. \(\frac{x-10}{1994}+\frac{x-8}{1996}+\frac{x-6}{1998}+\frac{x-4}{2000}+\frac{x-2}{2002}\)\(=\frac{x-2002}{2}+\frac{x-2000}{4}+\frac{x-1998}{6}+\frac{x-1996}{8}+\frac{x-1994}{10}\)
e. \(\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}=10\)
\( a)5\left( {x - 3} \right) - 4 = 2\left( {x - 1} \right) + 7\\ \Leftrightarrow 5x - 15 - 4 = 2x - 2 + 7\\ \Leftrightarrow 5x - 19 = 2x + 5\\ \Leftrightarrow 5x - 2x = 5 + 19\\ \Leftrightarrow 3x = 24\\ \Leftrightarrow x = 8\\ b)\dfrac{{8x - 3}}{4} - \dfrac{{3x - 2}}{2} = \dfrac{{2x - 1}}{2} + \dfrac{{x + 3}}{4}\\ \Leftrightarrow 8x - 3 - \left( {3x - 2} \right).2 = \left( {2x - 1} \right).2 + x + 3\\ \Leftrightarrow 8x - 3 - 6x + 4 = 4x - 2 + x + 3\\ \Leftrightarrow 2x + 1 = 5x + 1\\ \Leftrightarrow 2x - 5x = 0\\ \Leftrightarrow - 3x = 0\\ \Leftrightarrow x = 0 \)
\( c)\dfrac{{2\left( {x + 5} \right)}}{3} + \dfrac{{x + 12}}{2} - \dfrac{{5\left( {x - 2} \right)}}{6} = \dfrac{x}{3} + 11\\ \Leftrightarrow 4\left( {x + 5} \right) + 3\left( {x + 12} \right) - \left[ {5\left( {x - 2} \right)} \right] = 2x + 66\\ \Leftrightarrow 4x + 20 + 3x + 36 - 5x + 10 = 2x + 66\\ \Leftrightarrow 2x + 66 = 2x + 66\\ \Leftrightarrow 0x = 0\left( {VSN} \right)\\ \Leftrightarrow x = 0 \)
\(d)\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}+\dfrac{x-4}{2000}+\dfrac{x-2}{2002}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}+\dfrac{x-1996}{8}+\dfrac{x-1994}{10}\\ \Leftrightarrow \dfrac{x-10}{1994}-1+\dfrac{x-8}{1996}-1+\dfrac{x-6}{1998}-1+\dfrac{x-4}{2000}-1+\dfrac{x-2}{2002}-1=\dfrac{x-2002}{2}-1+\dfrac{x-2000}{4}-1+\dfrac{x-1998}{6}-1+\dfrac{x-1996}{8}-1+\dfrac{x-1994}{10}-1\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}+\dfrac{x-2004}{8}+\dfrac{x-2004}{10}\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}-\dfrac{x-2004}{8}-\dfrac{x-2004}{10}=0\\ \Leftrightarrow \left(x-2004\right)\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}+\dfrac{1}{2000}+\dfrac{1}{2002}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{10}=0\right)\\ \Leftrightarrow x-2004=0\\ \Leftrightarrow x=2004\)
a, 5(x-3)-4=2(x-1)+7
<=>\(5x-15-4=2x-2+7\)
\(\Leftrightarrow5x-2x=15+4-2+7\)
\(\Leftrightarrow3x=24\)
\(\Leftrightarrow x=8\)
b, \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
\(\Leftrightarrow\frac{8x-3}{4}-\frac{2\left(3x-2\right)}{4}=\frac{2\left(2x-1\right)}{4}+\frac{x+3}{4}\)
\(\Rightarrow8x-3-6x+4=4x-2+x+3\)
\(\Leftrightarrow8x-6x-4x-x=3+4-2+3\)
\(\Leftrightarrow-3x=8\)
\(\Leftrightarrow x=\frac{-8}{3}\)
c,\(\frac{2\left(x+5\right)}{3}+\frac{x+12}{2}-\frac{5\left(x-2\right)}{6}=\frac{x}{3}+11\)
<=>\(\frac{4\left(x+5\right)}{6}+\frac{3\left(x+12\right)}{6}-\frac{5\left(x-2\right)}{6}=\frac{2x}{6}+\frac{66}{6}\)
\(\Leftrightarrow\frac{4x+20}{6}+\frac{3x+36}{6}-\frac{5x-10}{6}=\frac{2x}{6}+\frac{66}{6}\)
\(\Rightarrow4x+20+3x+36-5x+10=2x+66\)
\(\Leftrightarrow4x+3x-5x-2x=66-20-36-10\)
\(\Leftrightarrow0=0\)
\(\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right)\left(\frac{2}{x^3}+\frac{1-x}{x}\right)\) ) ae giúp mik vs nhé mik cần gấp kết quả vs cách lm ngắn gọn nhất của bài này ạ
giải phương trình
\(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)^{ }\)
\(\frac{2a-9}{2a-5}+\frac{3a}{3a-2}=2\)
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\frac{2}{-x^2+6x-8}-\frac{x-1}{x-2}=\frac{x+3}{x-4}\)
\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\frac{8x^23}{3\left(1-4x^2\right)}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=-1\)
\(\frac{2x+1}{x-1}=\frac{5\left(x-1\right)}{x+1}\)
\(\frac{x-3}{x-2}-\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\frac{5x-2}{2-2x}+\frac{2x-1}{2}=1-\frac{x^2+x-3}{1-x}\)
Giải phương trình
a) \(\frac{4}{20-6x-2x^2}\)+ \(\frac{x^2+4x}{x^2+5x}-\frac{x+3}{2-x}+3=0\)
b)\(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2-10x}+10=\frac{x+25}{2x^2-50}\)
c) \(\frac{7}{8x}+\frac{5-x}{4x^2-8x}=\frac{x-1}{2x.\left(x-2\right)}+\frac{1}{8x-16}\)
c) \(\frac{7}{8x}+\frac{5-x}{4x^2-8x}=\frac{x-1}{2x.\left(x-2\right)}+\frac{1}{8x-16}\)