Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hải Văn
Xem chi tiết
Nguyễn Thị Minh Thư
13 tháng 4 2020 lúc 18:12

a, Ta có ;     X = xn1+x2 n2+ x3+ n3+...+xnk

                                         N

    <=> qX = q (xn1+x2 n+ x3 n+...+ xk n)

                                  N

( qx1)n1+(qx2)n2 +( qx3)n3+...+(qxk)nk

                         N 

Khách vãng lai đã xóa
Pham Kelly
16 tháng 1 2021 lúc 9:20

Ok

 

Minh Đức
Xem chi tiết
Phạm Thị Anh Thư
Xem chi tiết
Huỳnh Hoàng Thanh Như
Xem chi tiết
Kudo Uriyama
12 tháng 2 2017 lúc 16:09

fgtyeffetf

Trần Quốc Tuấn hi
Xem chi tiết
Thiên bình cute
Xem chi tiết
mai nguyễn
12 tháng 8 2017 lúc 17:42

Số nhỏ nhất là 8 bn nha 

Lily Nguyen
12 tháng 8 2017 lúc 17:46

gọi số thứ 1 là a, số thứ 2 là b, số thứ 3 là c, số thứ 4 là c

ta có:

a+3=b-a=c:3=dx3

=> a=3d-3, b=3d+3, c=9d

=> 3d-3+3d+3+9d+d=32x4

suy ra d = 8

nha

, share và kb mk nha

Quang Teo
Xem chi tiết
Nguyễn Lê Thảo Nguyên
12 tháng 2 2018 lúc 9:45

Giả sử giá trị của dấu hiệu là x, tần số của giá trị là n, số cộng thêm là a.
Ta có: Số trung bình cộng ban đầu là:
X¯¯¯¯=x1.n1+x2.n2+...+xk.nkNX¯=x1.n1+x2.n2+...+xk.nkN
Số trung bình cộng sau khi cộng thêm a là:
X′¯¯¯¯¯¯=(x1+a).n1+(x2+a).n2+...+(xk+a).nkNX′¯=(x1+a).n1+(x2+a).n2+...+(xk+a).nkN
X′¯¯¯¯¯¯=(x1.n1+x2.n2+...+xk.nk)+a.(n1+n2+...+nkNX′¯=(x1.n1+x2.n2+...+xk.nk)+a.(n1+n2+...+nkN
=(x1.n1+x2.n2+...+xk.nk)N+a.NN=(x1.n1+x2.n2+...+xk.nk)N+a.NN
(vì tổng các tần số n1+n2+...+nk=Nn1+n2+...+nk=N)
Nên X′¯¯¯¯¯¯=X¯¯¯¯+aX′¯=X¯+a
Vậy số trung bình cộng cũng được cộng thêm với số đó. (đpcm)

Nguyễn Bá Tuấn Vũ 44
Xem chi tiết
Cố gắng lên bạn nhé
Xem chi tiết
tu dam van thien
4 tháng 9 2017 lúc 22:13

ban hay that

Đoàn Thị Quỳnh Chi
25 tháng 1 2018 lúc 17:56

sorry mình  học lớp 5 nên không trả lời cho bạn được.Nhưng hình nền bạn đặt rất đẹp và dễ thương.

Các tính chất[sửa | sửa mã nguồn]

Nếu phương sai tồn tại, thì nó không bao giờ âm, vì bình phương một số luôn dương hoặc bằng 0.Đơn vị của phương sai là bình phương đơn vị của giá trị quan sát được của biến ngẫu nhiên. Ví dụ, phương sai của tập hợp các chiều cao đo được tính theo centimet (cm) có đơn vị là cm bình phương. Đơn vị này gây bất tiện nên các nhà thống kê thường sử dụng căn bậc hai của phương sai, gọi là độ lệch chuẩn, coi như là tổng của các phân tán.Nếu a và b là các hằng số thực, X là một biến ngẫu nhiên, thì {\displaystyle aX+b}{\displaystyle aX+b} cũng là biến ngẫu nhiên với phương sai là:

{\displaystyle \operatorname {var} (aX+b)=a^{2}\operatorname {var} (X).}{\displaystyle \operatorname {var} (aX+b)=a^{2}\operatorname {var} (X).}

Khi tính phương sai, để thuận tiện ta thường dùng công thức:

{\displaystyle \operatorname {var} (X)=\operatorname {E} (X^{2}-2\,X\,\operatorname {E} (X)+(\operatorname {E} (X))^{2})=\operatorname {E} (X^{2})-2(\operatorname {E} (X))^{2}+(\operatorname {E} (X))^{2}=\operatorname {E} (X^{2})-(\operatorname {E} (X))^{2}.}{\displaystyle \operatorname {var} (X)=\operatorname {E} (X^{2}-2\,X\,\operatorname {E} (X)+(\operatorname {E} (X))^{2})=\operatorname {E} (X^{2})-2(\operatorname {E} (X))^{2}+(\operatorname {E} (X))^{2}=\operatorname {E} (X^{2})-(\operatorname {E} (X))^{2}.}

{\displaystyle \operatorname {var} (aX+bY)=a^{2}\operatorname {var} (X)+b^{2}\operatorname {var} (Y)+2ab\,\operatorname {cov} (X,Y).}{\displaystyle \operatorname {var} (aX+bY)=a^{2}\operatorname {var} (X)+b^{2}\operatorname {var} (Y)+2ab\,\operatorname {cov} (X,Y).}

Với {\displaystyle \operatorname {cov} }{\displaystyle \operatorname {cov} } là hiệp phương sai, bằng 0 nếu X và Y là 2 biến ngẫu nhiên độc lập lẫn nhau.