Bài 1 : Giải hệ phương trình \(\begin{cases}2(x+3)=3(y+1)+1\\3(x-y+1)=2(x-2)+3\end{cases}\)
Giải các hệ phương trình :
a) \(\hept{\begin{cases}2\left(x^2+y^2+xy\right)+x=5\\\left(x+y\right)^2+y=3\end{cases}}\)
b) \(\hept{\begin{cases}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{cases}}\)
Giải hệ phương trình: \(\begin{cases}3\sqrt[3]{3x^2+y+1}=\left(x-1\right)^3-y\\x^3-y-2x^2+2x+\sqrt{x}=\sqrt{x^3-y-2x^2+2x+21}\end{cases}\)
Giải hệ phương trình \(\hept{\begin{cases}2\sqrt{x}\left(1+\frac{1}{x+y}\right)=3\\2\sqrt{y}\left(1-\frac{1}{x+y}\right)=1\end{cases}}\)
giải hệ phương trình\(\hept{\begin{cases}\frac{7}{x-y+2}-\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{cases}}\)
\(\hept{\begin{cases}\frac{7}{x-y+2}-\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{cases}}\)
Đặt \(a=\frac{1}{x-y+2};b=\frac{1}{x+y-1}\)ta được hệ phương trình:
\(\hept{\begin{cases}7a-5b=\frac{9}{2}\\3a+2b=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=\frac{1}{2}\end{cases}}}\)
Với \(\hept{\begin{cases}a=1\\b=\frac{1}{2}\end{cases}}\), ta được:
\(\hept{\begin{cases}\frac{1}{x-y+2}=1\\\frac{1}{x+y-1}=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y+2=1\\x+y-1=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Vậy hệ phương trình có 1 nghiệm là x = 1 và y = 2
Giải hệ phương trình: \(\begin{cases}\sqrt{2y^2+3x+1}+\sqrt{1-3x}=2\sqrt{y^2+1}\\y^3+1+\sqrt[3]{y^3-3x^2+3x-1}=x\left(y^2+1\right)\end{cases}\)
Giải các hệ phương trình :
a ) \(\hept{\begin{cases}x^2-3y=2\\9y^2-8x=8\end{cases}}\)
b ) \(\hept{\begin{cases}xy+x+y=3\\\frac{1}{x^2+2x}+\frac{1}{y^2+2y}=\frac{2}{3}\end{cases}}\)
\(a,\hept{\begin{cases}x^2-3y=2\\9y^2-8x=8\end{cases}}\)
\(x^2-3y=2\)
\(y=\frac{1^2-2}{3}\)
\(9-\left(\frac{x^2-2}{3}\right)^2-8x=8\)
\(\Rightarrow x^4-4x^2+4-8x-8=0\)
\(\Rightarrow x^4-4x^2-8x-4=0\)
\(\Rightarrow\left(x^2-2x-2\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\frac{2+2\sqrt{3}}{3}\\y=\frac{2-2\sqrt{3}}{3}\end{cases}}\)
Vậy ................................
Giả hệ phương trình:
\(\hept{\begin{cases}x+\sqrt{x^2-2x+2}=3^{y-1}+1\\y+\sqrt{y^2-2y+2}=3^{x-1}+1\end{cases}}\)
P/s: Ai giải được nào? Giải nhớ có cách làm nhé
Ko ai bt thì tôi tự giải. Xem có đúng ko?
Giải:
Đặt:
\(\hept{\begin{cases}a=x-1\\b=y-1\end{cases}}\)
Thay thế vào hệ, ta có:
\(\hept{\begin{cases}a+\sqrt{a^2+1}=3^b\\b+\sqrt{b^2+1}=3^a\end{cases}}\)
Vế trừ vế ta có:
\(a+\sqrt{a^2+1}+3^a=b+\sqrt{a^2+1}+3^b\)
Dùng hàm số
Suy ra: \(a=b\)
có thể bn nhưng lớp mk chưa học đến dạng này
giải hệ phương trình
a)\(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)
b)\(\hept{\begin{cases}\frac{1}{x+y}-\frac{2}{x-y}=2\\\frac{5}{x+y}-\frac{4}{x-y}=3\end{cases}}\)
c)\(\hept{\begin{cases}4x^2+y^2=13\\2x^2-y^2=-7\end{cases}}\)
d)\(\hept{\begin{cases}2xy+2=3x\\5y-\frac{2}{x}=4\end{cases}}\)
e)\(\hept{\begin{cases}2\sqrt{x-1}+3\sqrt{y-2}=5\\3\sqrt{x-1}-\sqrt{y-2}=2\end{cases}}\)
MỌI NGƯỜI GIÚP MK LM MẤY BÀI NÀY NHA MK CẦN GẤP LẮM LUÔN
Ôi trời nhiều thía ? làm từng câu một ha !
a \(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)
b, ĐKXĐ \(x\ne\pm y\)
Đặt \(\frac{1}{x+y}=a\) và \(\frac{1}{x-y}=b\)(a và b khác 0)
Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)
c,\(\hept{\begin{cases}4x^2+y^2=13\\2x^2-y^2=-7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x^2+y^2+2x^2-y^2=13-7\\2x^2-y^2=-7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x^2=6\\2x^2-y^2=-7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1\\y^2=9\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm1\\y=\pm3\end{cases}}\)
Giải hệ phương trình:\(\hept{\begin{cases}x^2+y^2=1\\x^8+y^{12}=1\end{cases}}\)