Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Anh Cường
Xem chi tiết
Zoro
Xem chi tiết
Thủy Tiên
Xem chi tiết
witch roses
Xem chi tiết
Nguyễn Tuấn Tài
25 tháng 5 2015 lúc 9:49

sao ging ho dai ca biết có lẽ cũng xem ở đó hả

thien ty tfboys
25 tháng 5 2015 lúc 9:41

 bổ đề: " Một số chính phương a^2 khi chia cho 5 chỉ có thể dư 0; 1 hoặc 4 " 

Chứng minh: Ta xét 5 trường hợp: 
+ a = 5k => a^2 = 25k^2, chia 5 dư 0 

+ a = 5k + 1 => a^2 = (5k + 1)^2 = 25k^2 + 10k + 1, chia 5 dư 1 

+ a = 5k + 2 => a^2 = (5k + 2)^2 = 25k^2 + 20k + 4, chia 5 dư 4 

+ a = 5k + 3 => a^2 = (5k + 3)^2 = 25k^2 + 30k + 9, chia 5 dư 4 

+ a = 5k + 4 => a^2 = 25k^2 + 40k + 16, chia 5 dư 1 

Vậy bổ đề được chứng minh 

Trở lại bài toán: Ta có (5^(2p)) + 1997 chia 5 dư 2 

(5^(2p^2)) + q^2 chia 5 dư q^2, áp dụng bổ đề ta được q^2 chia 5 chỉ có thể dư 0, 1 hoặc 4 chứ không thể dư 2 => 2 số (5^(2p))+1997 và (5^(2p^2))+q^2 khi chia cho 5 không bao giờ có cùng số dư, vậy nên chúng không thể bằng nhau 

=> không tồn tại 2 số nguyên tố p và q thỏa mãn yêu cầu bài toán 

p/s: theo lời giải trên ta thấy có thể mở rộng bào toán cho trường hợp p và q là "các số nguyên" chứ không cần là số nguyên tố

giang ho dai ca
25 tháng 5 2015 lúc 9:43

thien ty tfboys cop bài ở đây nè : 

https://vn.answers.yahoo.com/question/index?qid=20110608051915AA303Z1

nguyễn duy hải
Xem chi tiết
Ninja_vip_pro
5 tháng 6 2015 lúc 7:44

 bổ đề: " Một số chính phương a^2 khi chia cho 5 chỉ có thể dư 0; 1 hoặc 4 " 

Chứng minh: Ta xét 5 trường hợp: 
+ a = 5k => a^2 = 25k^2, chia 5 dư 0 

+ a = 5k + 1 => a^2 = (5k + 1)^2 = 25k^2 + 10k + 1, chia 5 dư 1 

+ a = 5k + 2 => a^2 = (5k + 2)^2 = 25k^2 + 20k + 4, chia 5 dư 4 

+ a = 5k + 3 => a^2 = (5k + 3)^2 = 25k^2 + 30k + 9, chia 5 dư 4 

+ a = 5k + 4 => a^2 = 25k^2 + 40k + 16, chia 5 dư 1 

Vậy bổ đề được chứng minh 

Trở lại bài toán: Ta có (5^(2p)) + 1997 chia 5 dư 2 

(5^(2p^2)) + q^2 chia 5 dư q^2, áp dụng bổ đề ta được q^2 chia 5 chỉ có thể dư 0, 1 hoặc 4 chứ không thể dư 2 => 2 số (5^(2p))+1997 và (5^(2p^2))+q^2 khi chia cho 5 không bao giờ có cùng số dư, vậy nên chúng không thể bằng nhau 

=> không tồn tại 2 số nguyên tố p và q thỏa mãn yêu cầu bài toán 
 

 

chắc vậy

Nguyễn Võ Văn
5 tháng 6 2015 lúc 7:45

bổ đề: " Một số chính phương a^2 khi chia cho 5 chỉ có thể dư 0; 1 hoặc 4 " 

Chứng minh: Ta xét 5 trường hợp: 
+ a = 5k => a^2 = 25k^2, chia 5 dư 0 

+ a = 5k + 1 => a^2 = (5k + 1)^2 = 25k^2 + 10k + 1, chia 5 dư 1 

+ a = 5k + 2 => a^2 = (5k + 2)^2 = 25k^2 + 20k + 4, chia 5 dư 4 

+ a = 5k + 3 => a^2 = (5k + 3)^2 = 25k^2 + 30k + 9, chia 5 dư 4 

+ a = 5k + 4 => a^2 = 25k^2 + 40k + 16, chia 5 dư 1 

Vậy bổ đề được chứng minh 

Trở lại bài toán: Ta có (5^(2p)) + 1997 chia 5 dư 2 

(5^(2p^2)) + q^2 chia 5 dư q^2, áp dụng bổ đề ta được q^2 chia 5 chỉ có thể dư 0, 1 hoặc 4 chứ không thể dư 2 => 2 số (5^(2p))+1997 và (5^(2p^2))+q^2 khi chia cho 5 không bao giờ có cùng số dư, vậy nên chúng không thể bằng nhau 

=> không tồn tại 2 số nguyên tố p và q thỏa mãn yêu cầu bài toán 

Kẻ Bí Mật
5 tháng 6 2015 lúc 7:52

Một số chính phương a^2 khi chia cho 5 chỉ có thể dư 0; 1 hoặc 4 " 

Chứng minh: Ta xét 5 trường hợp: 
+ a = 5k => a^2 = 25k^2, chia 5 dư 0 

+ a = 5k + 1 => a^2 = (5k + 1)^2 = 25k^2 + 10k + 1, chia 5 dư 1 

+ a = 5k + 2 => a^2 = (5k + 2)^2 = 25k^2 + 20k + 4, chia 5 dư 4 

+ a = 5k + 3 => a^2 = (5k + 3)^2 = 25k^2 + 30k + 9, chia 5 dư 4 

+ a = 5k + 4 => a^2 = 25k^2 + 40k + 16, chia 5 dư 1 

Vậy bổ đề được chứng minh 

Trở lại bài toán: Ta có (5^(2p)) + 1997 chia 5 dư 2 

(5^(2p^2)) + q^2 chia 5 dư q^2, áp dụng bổ đề ta được q^2 chia 5 chỉ có thể dư 0, 1 hoặc 4 chứ không thể dư 2 => 2 số (5^(2p))+1997 và (5^(2p^2))+q^2 khi chia cho 5 không bao giờ có cùng số dư, vậy nên chúng không thể bằng nhau 

=> không tồn tại 2 số nguyên tố p và q thỏa mãn yêu cầu bài toán 

p/s: theo lời giải trên ta thấy có thể mở rộng bào toán cho trường hợp p và q là "các số nguyên" chứ không cần là số nguyên tố

Chu Minh Hiếu
Xem chi tiết
Nguyễn Văn Duy
Xem chi tiết
Trần Ngọc Mai Anh
4 tháng 4 2016 lúc 13:55

sory anh nha , em mới hok lớp 5 ak

tran phuong trang
Xem chi tiết
Bùi Minh Anh
Xem chi tiết
༺Monster༒Hunter༻
17 tháng 4 2020 lúc 16:58

ko làm mà đòi ăn is thì có mà ăn cứt ăn đầu buồi! Nhá thế cho nó dễ -Huấn Rose said

Khách vãng lai đã xóa
Min_Suga_1993
Xem chi tiết
Nguyễn Mai Hương
21 tháng 2 2018 lúc 15:46

xét 2p=0

5^2p+1997=1998

2>0=>2p+2>0

5^2p+2+q^2=...5+q^2=1998

q^2 có tận cùng=3 vô lí

tương ứng vs2n>0

ko có q, p nào thỏa mãn

k mk nhé chưa chắc mk lm đúng đôu

Nguyễn Hoàng Phương Thảo
13 tháng 5 2018 lúc 16:59

đéch bít