Tính C=\(\sqrt[3]{6+\sqrt{\frac{847}{27}}}+\sqrt[3]{6-\sqrt{\frac{847}{27}}}\)
Tính:
\(x=\sqrt[3]{6+\sqrt{\frac{847}{27}}}+\sqrt[3]{6-\sqrt{\frac{847}{27}}}\)
hình thức đăng vui phương pháp lập phương hai vế sau đó nhẩm nghiệm dùng tiếp sơ đồ hoc-ne :))) là ok
\(x^3=6+\sqrt{\frac{847}{27}}+6-\sqrt{\frac{847}{27}}+3.\sqrt[3]{\left[6^2-\left(\sqrt{\frac{847}{27}}\right)^2\right]}.x\)
\(\Rightarrow x^3=12+3.\sqrt[3]{\frac{125}{27}}x\)
\(\Leftrightarrow x^3-5x-12=0\)
\(\Leftrightarrow x^3-9x+4x-12=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x-3\right)+4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+4\right)=0\).Vì \(x^2+3x+4=x^2+2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow x=3\)
Sao lại phân tích như thế????? Dòng thứ 4 ko biết dùng sơ đồ hoc-ne à?????
chứng minh đẳng thức
\(\sqrt[3]{6+\sqrt{\frac{847}{27}}}+\sqrt[3]{6-\sqrt{\frac{847}{27}}}=3\)
đặt \(a=\sqrt[3]{6+\sqrt{\frac{847}{27}}};b=\sqrt[3]{6-\sqrt{\frac{847}{27}}}\). dễ thấy a> 0; b > 0
=> \(a^3+b^3=6+\sqrt{\frac{847}{27}}+6-\sqrt{\frac{847}{27}}=12\); \(a.b=\sqrt[3]{6+\sqrt{\frac{847}{27}}}.\sqrt[3]{6-\sqrt{\frac{847}{27}}}=\sqrt[3]{36-\frac{847}{27}}=\frac{5}{3}\)
Có: (a+ b)3 = a3 + b3 + 3ab (a+ b)
=> (a + b)3 = 12 + 3. \(\frac{5}{3}\).(a + b) = 12+ 5.(a + b)
=> (a + b)3 - 5.(a +b) - 12 = 0
<=> (a + b)3 - 9.(a + b) + 4.(a + b) - 12 = 0
<=> (a + b). [(a + b)2 - 9] + 4.(a + b - 3) = 0 <=> (a + b).(a + b + 3).(a + b- 3) + 4.(a + b - 3) = 0
<=> (a+ b - 3).[(a + b)(a+ b+ 3) + 4] = 0
<=> a+ b = 3 hoặc (a + b)(a+ b+ 3) + 4 = 0
tuy nhiên : Vì a > 0; b > 0 nên (a + b)(a+ b+ 3) + 4 > 0
vậy a + b = 3 => điều phải chứng minh
Tính giá trị biểu thức :
\(P=\sqrt[3]{6+\sqrt{\frac{847}{27}}}+\sqrt[3]{6-\sqrt{\frac{847}{27}}}\)
\(P=\sqrt[3]{6+\sqrt{\frac{847}{27}}}+\sqrt[3]{6+\sqrt{\frac{847}{27}}}\)
Ta áp dụng hằng đẳng thức :
\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Rightarrow P^3=6+\sqrt{\frac{847}{27}}+6-\sqrt{\frac{847}{27}}+3\sqrt[3]{6+\sqrt{\frac{847}{27}}}.\sqrt[3]{6-\sqrt{\frac{847}{27}}}\left(3\sqrt[3]{6+\sqrt{\frac{847}{27}}}.\sqrt[3]{6-\sqrt{\frac{847}{27}}}\right)\)
\(\Leftrightarrow P^3=12+3.\sqrt[3]{36-\frac{847}{27}}.P=12+5P\)
\(\Leftrightarrow P^3-5P-12=0\)
\(\Leftrightarrow\left(P-3\right)\left(P^2+3P+4\right)=0\)
\(\Leftrightarrow P=3\) hoặc \(P^3+3P+4=0\) vô nghiệm
Vậy \(P=3\)
câu 1: tính
a)\(\frac{7}{\sqrt{10}-\sqrt{3}}-\frac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}-\frac{6}{\sqrt{3}}\)
b)\(\frac{\sqrt{27}-3\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\frac{6}{3+\sqrt{3}}+\frac{3}{\sqrt{3}}\)
2.
a,\(\sqrt{12}-\sqrt{27}+\sqrt{3}\)
b,\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448};\sqrt{3}.\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right)\)
c,\(\frac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}};\frac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
d,\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
a)
\(\sqrt{12}-\sqrt{27}+\sqrt{3}=\sqrt{4}.\sqrt{3}-\sqrt{9}.\sqrt{3}+\sqrt{3}=2\sqrt{3}-3\sqrt{3}+\sqrt{3}\)
\(=\sqrt{3}(2-3+1)=0\)
b)
\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{4}.\sqrt{63}-\sqrt{4}.\sqrt{175}+\sqrt{4}.\sqrt{252}-\sqrt{4}.\sqrt{112}\)
\(=2(\sqrt{63}-\sqrt{175}+\sqrt{252}-\sqrt{112})\)
\(=2(\sqrt{9}.\sqrt{7}-\sqrt{25}.\sqrt{7}+\sqrt{36}.\sqrt{7}-\sqrt{16}.\sqrt{7})\)
\(=2(3\sqrt{7}-5\sqrt{7}+6\sqrt{7}-4\sqrt{7})=2\sqrt{7}(3-5+6-4)=0\)
------------------
\(\sqrt{3}(\sqrt{12}+\sqrt{27}-\sqrt{3})=\sqrt{36}+\sqrt{81}-\sqrt{9}\)
\(=\sqrt{6^2}+\sqrt{9^2}-\sqrt{3^2}=6+9-3=12\)
c)
\(\frac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}=\frac{\sqrt{2}.\sqrt{3}+\sqrt{2}.\sqrt{5}}{\sqrt{7}.\sqrt{3}+\sqrt{7}.\sqrt{5}}=\frac{\sqrt{2}(\sqrt{3}+\sqrt{5})}{\sqrt{7}(\sqrt{3}+\sqrt{5})}=\frac{\sqrt{2}}{\sqrt{7}}\)
\(\frac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}=\frac{\sqrt{81}.\sqrt{5}+3\sqrt{9}.\sqrt{3}}{3\sqrt{3}+\sqrt{9}.\sqrt{5}}=\frac{9\sqrt{5}+9\sqrt{3}}{3\sqrt{3}+3\sqrt{5}}\)
\(=\frac{3(3\sqrt{5}+3\sqrt{3})}{3\sqrt{3}+3\sqrt{5}}=3\)
d)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-(\sqrt{6}+\sqrt{9}+\sqrt{12})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-(\sqrt{2}.\sqrt{3}+\sqrt{3}.\sqrt{3}+\sqrt{3}.\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{3}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})(1-\sqrt{3})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1-\sqrt{3}\)
Chứng minh rằng: \(\sqrt[3]{\sqrt{\frac{2303}{27}+6}}-\sqrt[3]{\sqrt{\frac{2303}{27}-6}}\)6 là các số nguyên
Bạn không sửa thì m sửa.
Sửa đề: \(P=\sqrt[3]{\sqrt{\frac{2303}{27}}+6}-\sqrt[3]{\sqrt{\frac{2303}{27}}-6}\)
\(P^3=\sqrt{\frac{2303}{27}}+6-\left(\sqrt{\frac{2303}{27}}-6\right)-\frac{3.11.P}{3}\)
\(\Leftrightarrow P^3=12-11P\)
\(\Leftrightarrow P^3+11P-12=0\)
\(\Leftrightarrow\left(P-1\right)\left(P^2+P+12\right)=0\)
Vì \(P^2+P+12>0\) nên ta có
\(P=1\)
theo tớ là cậu chép sai đề rồi cậu chép lại đi
Bài 1. Tính
\(G=\sqrt[3]{2+10\sqrt{\frac{1}{27}}}+\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)
\(H=\sqrt[3]{1+\sqrt{2}}.\sqrt[6]{3-2\sqrt{2}}\)
thực hiện phép tính:
a) \(-\sqrt{27}+6\sqrt{\frac{1}{3}}-\sqrt{12}\)
b) \(\sqrt{\frac{72}{9}}:\sqrt{18}-\frac{5}{6}\)
c) \(\frac{2}{3}\sqrt{3}-\frac{1}{4}\sqrt{18}+\frac{2}{5}\sqrt{2}-\frac{1}{4}\sqrt{12}\)
Tính : \(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)