Tìm x biết x thuộc Z
x^2018 +10=0
tìm x thuộc Z biết: x+(x+1)+(x+2)+...+2018+2019=0
gọi x+[x+1]+[x+2]+...+2018+2019=0là A
2A=[X+2019]+..+[2019+X]=0
=>X LÀ SỐ ĐỐI CỦA 2019
=>X=-2019
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
1: tìm x biết
a, -2018.( x-11)=0\
b, -2018 . (x + 13 ) < 0
c, 2018 (2x - 10 ) >0
d, ( x -3 ) (3x -9 ) = 0
e, ( x-1 0 ( x + 5 ) <0
a, Vì -2018 khác 0
=> x-11=0
=> x=11
b, Vì -2018 < 0
=> x+13 > 0
=> x > -13
c, Vì 2018 > 0 => 2x-10 > 0
=> 2x > 10
=> x > 5
d, => x-3=0 hoặc 3x-9=0
=> x=3
e, Vì x-1 < x+5
=> x-1 < 0 và x+5 > 0
=> x < 1 và x > -5
=> -5 < x < 1
Tk mk nha
cho 0<x,y,z<=1 tìm GTLN của
x^2016 + y^2017 -z^2018 -xy -yz -zx.
Tìm x,y thuộc Z, biết:
a) (x-3)×(1+x)=0
b) (-1004)×(-1005)×2018×(x-3) <0
Tìm x thuộc Z,biết
A)4.(x mũ 2 +1)=0
B) - 2018.(x + 2019)= 0 mũ 2020
a ) 4 . ( x2 + 1 ) = 0
x2 + 1 = 0 : 4
x2 + 1 = 0
x2 = 0 - 1
x2 = - 1
x2 = - 12 => x = - 1
Vậy x = - 1
b ) - 2018 . ( X + 2019 ) = 02020
- 2018 . ( x + 2019 ) = 0
x + 2019 = 0 : ( - 2018 )
x + 2019 = 0
x = 0 - 2019
x = - 2019
Vậy x = - 2019
Tìm x thuộc z
|x-2|=4-x
Tìm x,y thuộc Z
a |x-1|+|y+z|=0
b |2017-x|+|y-x+2018|=0
c|x+2017|mũ 2017+|x-y+2018|mũ 2018 =0
Cảm ơn các bạn
Bài 1:
|x-2|=4-x
ĐK: \(4-x\ge0\Leftrightarrow x\le4\)
Ta có: \(\orbr{\begin{cases}x-2=4-x\\x-2=x-4\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\0=2\left(loại\right)\end{cases}\Rightarrow}}x=3\left(tm\right)\)
Vậy x = 3
Bài 2:
a, sao có z
b, Vì \(\hept{\begin{cases}\left|2017-x\right|\ge0\\\left|y-x+2018\right|\ge0\end{cases}\Rightarrow\left|2017-x\right|+\left|y-x+2018\right|\ge0}\)
Mà |2017-x|+|y-x+2018|=0
\(\Rightarrow\hept{\begin{cases}\left|2017-x\right|=0\\\left|y-x+2018\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2017\\y-2017+2018=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2017\\y=1\end{cases}}}\)
Vậy x=2017,y=1
c, giống b
Bài 2 cũng có z bạn ạ Làm luôn hộ mình câu b
b) ta thấy /2017-x/>=0
/y-x+2018/>= 0
=> /2017-x/+/y-x+2018/>=0
dấu = xảy ra khi 2017-x=0 => x=2017
và y-x+2018=0 => y= 1
vậy (x;y)=(2017;1)
Cho x + y + z = 1 ; x , y , z > 0
CMR : \(\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}\) >/ 14
Cho x , y , z thuộc Z ; x,y,z khác 0 và \(\sqrt{x+y+z-2018}+\sqrt{2018\left(xy+yz+zx-xyz\right)}=0\)
Tính S = \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}\)
CÁC BẠN GIẢI GIÚP MÌNH CHI TIẾT BÀI NÀY VỚI !
Bài 1:Áp dụng C-S dạng engel
\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)
\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)
tìm x y thuộc z biết
(24-4y)^2018+|x^2-4|^2019< hoặc=0
\(\left(24-4y\right)^{2018}+\left|x^2-4\right|^{2019}\le0\left(1\right)\)
Vì \(\hept{\begin{cases}\left(24-4y\right)^{2018}\ge0;\forall x,y\\\left|x^2-4\right|^{2019}\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(24-4y\right)^{2018}+\left|x^2-4\right|^{2019}\ge0;\forall x,y\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}\left(24-4y\right)^{2018}=0\\\left|x^2-4\right|^{2019}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=6\\x=\pm2\end{cases}}\)
Vậy \(\left(x,y\right)\in\left\{\left(2;6\right);\left(-2;6\right)\right\}\)
Bài 1:Tìm x,y,z thuộc Z sao cho:x-y=-9;y-z=-10;z+x=11
Bài 2:Tìm x thuộc Z biết:
a.(x+1)+(x+3)+(x+5)+...+(x+99)=0
b.(x-3)+(x-2)+(x-1)+...+10+11=11
c.x+(x+1)+(x+2)+...+2018+2019=2019
Bài 3:Tìm các số nguyên x,y biết:
a.(x-2)(y-3)=7 b.(x+1)(2y-3)=10
c.xy-3x=-19 d.3x+4y-xy=16
(x+1)+(x+3)+...+(x+99)=0
Tổng các số hạng là: (99+1):2=50 (số hạng)
=> (x+1)+(x+3)+...+(x+99)=0 <=> 50.x+(1+3+5+...+99) = 0
<=> 50.x+=0 <=> 50.x+2500=0 => x=-2500/50=-50