\(M=2+2^2+2^3+2^4+.........+2^{2017}+2^{2018}\)
a)Tính M
b)Chứng tỏ M chia hết cho 3
Help nhé!!!
a] Tìm số tự nhiên x biết [9x + 2] chia hết cho [3x -1]
b] Chứng tỏ nếu [3a + 2b] chia hết cho 17 thì [10a +b] chia hết cho 17
NHANH LÊN NHÉ
Cho A=2+2^2+2^3+...+2^10
Chứng tỏ:
A chia hết cho 3
A chia hết cho 31
A chia hết cho 3 vì
A=2+2^2+2^3+...+2^10
A = ( 2 + 2^2 ) + (2^3 + 2^4 ) + ...+ (2^9 + 2^10)
A = 1 . (1 + 2) + 2^3 . ( 1 + 2 ) + ...+2^9 . ( 1+2 )
A = 1.3 + 2^3 . 3 +...+ 2^9 . 3
A = ( 1 + 2^3 + ...+ 2^9 ) . 3 chia hết cho 3 ( vì 3 chia hết cho 3)
vậy A chia hết cho 3
câu 16:
a)2+2^2+2^3+2^4+.........+2^100.Chứng tỏ rằng A chia hết cho 6
b)tìm tất cả các số tự nhiên n thỏa mãn 5n + 14 chia hết cho n + 2
a) A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^100
=(2 + 2^2) + (2^3 + 2^4) + ... + (2^99 + 2^100)
=(2 + 2^2) + 2(2 + 2^2) + ... + 2^98(2 + 2^2)
=(1 + 2 + ... + 2^98) . (2 + 2^2)
= (1 + 2 + ... + 2^98) . 6 ⋮ 6
Vậy A ⋮ 6 (đpcm)
Cho 2 số nguyên m,n. Chứng minh rằng ( m2+n2) chia hết cho 3 khi và chỉ khi m và n chia hết cho 3.
( xét 2 TH nhé bạn )
* m^2+n^2 chia hết cho 3 thì m,n chia hết cho 3
Giả sử m không chia hết cho 3 => m^2 o chia hết cho 3 mà m^2 chia 3 dư 0 hoặc 1 => m^2 chia 3 dư 1 => n^2 chia 3 dư 2 (vô lý)
=>giả sử sai => m chia hết cho 3
Chứng minh tương tự n chia hết cho 3
* m,n chia hết cho 3 => m^2+n^2 chia hết cho 3
Vì m,n chia hết cho 3 => m^2, n^2 chia hết cho 3 => m^2+n^2 chia hết cho 3
Bài 1 : Chứng tỏ rằng
a) 94260 - 35137 chia hết cho 5
b) 995 - 984 + 973 - 962 chia hết cho2 và 5
Bài 2 : Cho n thuộc N . Chưng tỏ rằng 5n - 1 chia hết cho 4
Bài 3 : Cho n thuộc N . Chứng tỏ rằng n2 + n + 1 không chia hết cho cả 2 và 5
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
Cho A = 2 + 22 + 2 + 23 + 24 + ... + 219 + 220
Chứng tỏ A chia hết cho 3, A chia hết cho 6
\(A=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{19}\cdot\left(1+2\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{19}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{19}\right)⋮3\left(đpcm\right)\)
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
bạn cho mình hỏi cách viết lũy thừa kiểu gì vậy
Bài 5: Cho M = 2 + 22 + 23 .............+ 220 Chứng tỏ rằng M chia hết cho 5
M = 2 + 22 + 23 + ... + 220
M = ( 2 + 22 + 23 + 24 ) + ... + ( 217 + 218 + 219 + 220 )
M = 5 ( 1 + 4 + 10 ) + ... + 5 ( 1 + 4 + 10 )
M chia hết cho 5 ( đpcm )
Cho 2 .a + 7 . b trong ngoặc chia hết cho 3 . Chứng tỏ 4 . a + 2 . b trong ngoặc chia hết cho 3 .
DẤU CHẤM LÀ DẤU NHÂN NHA .
ta có 3(2a+3b) chia hết cho 3 <=> 6a+9b chia hết cho 3 <=> 2a+7b+4a+2b chia hết cho 3
mà 2a+7b chia hết cho 3 => 4a+2b chia hết cho 3
Chứng tỏ A chia hết cho 13
A=1+2+2^2+2^3+...+2^11
Theo đề bài ta có:
A = \(1+2+2^2+2^3+...+2^{11}\)
\(\Rightarrow A=2^0+2^1+2^2+2^3+...+2^{11}\)
\(\Leftrightarrow A=2^0.\left(1+2+2^2+2^3+2^4+2^5\right)+2^6.\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(\Rightarrow A=2^0.63+2^6.63\)
\(\Rightarrow A=63.\left(2^0+2^6\right)\)
\(\Rightarrow A=63.65\)
Vậy A chia hết cho 13 ( vì 65 chia hết cho 13)