Biết rằng \(\frac{x+y}{t+z}=\frac{2018}{2019}\) và \(2019y=2018z\) Tính tỉ số \(\frac{x}{t}\)
GIÚP MÌNH VỚI MAI MÌNH KT RỒI
CẢM ƠN NHIỀU
AI LÀM ĐC MÌNH TICK CHO
!!!!!!!!!!!!!!!
x+y/t+z=2018/2019 vì 2019y=2018z
tính tỉ số x/t
Vì \(\frac{x+y}{t+z}\)=\(\frac{2018}{2019}\)
➜(x+y).2019=(t+z).2018
➜x.2019+y.2019=t.2018+z.2018
mà 2019.y=2018.z
➜x.2019=t.2018
➜\(\frac{x}{t}\)=\(\frac{2018}{2019}\)
Cho \(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}\) . Chứng minh rằng : \(\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x}{t}\)
Mai mk thi r cho mình xem cách làm bài này nhé. Giúp mình với. HELP ME !!!
Áp dụng tính chất dãy tỉ số bằng nhau do đã có \(y+z+t\ne0\), sau đó nhân dãy đã cho vs nhau. cái kia mũ 3 lên
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x+y+z}{y+z+t}=\frac{x-y+z}{y-z+t}=\frac{x+y-z}{y+z-t}\)
=> \(\frac{x+y+z}{y+z+t}=\frac{x}{t}\) (1)
=> \(\frac{x-y+z}{y-z+t}=\frac{x}{t}\) (2)
=> \(\frac{x+y-z}{y+z-t}=\frac{x}{t}\) (3)
Từ (1);(2) và (3) => đpcm
Ta có: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\frac{x+y+z}{y+z+t}\)
\(\Rightarrow\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x^3}{y^3}=\frac{x}{y}\cdot\frac{x}{y}\cdot\frac{x}{y}=\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{t}=\frac{x}{t}\) (đpcm)
Tìm x,y,z biết \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)
Ai biết làm giúp mình nhe mai mình kiểm tra bài này rồi! Ai nhanh và đúng nhất mình sẽ tick cho!
Tìm x,y,z: \(\frac{X}{2}=\frac{y}{3}=\frac{z}{5}=\frac{z}{4}\)và\(X+y+z=26\)
AI GIÚP MÌNH VỚI CHIỀN MAI KT RỒI ! XIN THÀNH THẬT CẢM ƠN !!!!!!!!!!!!!!!!
Cho x + y + z = 1 ; x , y , z > 0
CMR : \(\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}\) >/ 14
Cho x , y , z thuộc Z ; x,y,z khác 0 và \(\sqrt{x+y+z-2018}+\sqrt{2018\left(xy+yz+zx-xyz\right)}=0\)
Tính S = \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}\)
CÁC BẠN GIẢI GIÚP MÌNH CHI TIẾT BÀI NÀY VỚI !
Bài 1:Áp dụng C-S dạng engel
\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)
\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)
Cho x, y, z là các số dương. Chứng minh rằng: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
(Bạn nào làm đúng và giải thích rõ thì mình tick cho. Giúp mình nhé )
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( Với x,y >0)
Nhân cả 2 vế với 2 rồi áp dụng. Ra ngay
Cho các số \(a,b,c,d\ne0\). Tính
\(T=x^{2019}+y^{2019}+z^{2019}+t^{2019}\)
Biết \(x,y,z,t\)thoả mãn: \(\frac{x^{2018}+y^{2018}+z^{2018}+t^{2018}}{a^2+b^2+c^2+d^2}=\frac{x^{2018}}{a^2}+\frac{y^{2018}}{b^2}+\frac{z^{2018}}{c^2}+\frac{t^{2018}}{d^2}\)
Cho tỉ lệ thức \(\frac{2}{4}và\frac{3}{6}\)
Tính và so sánh các tỉ số \(\frac{2+3}{4+6}và\frac{2-3}{4-6}\)với các tỉ số trong tỉ lệ thức đã cho =))
Ai làm đc và ghi cách giải mình sẽ tick cho :D Hạn chót là ngày mai, giúp mình với :)
Ta có \(\frac{2+3}{4+6}=\frac{1}{2}\)
\(\frac{2-3}{4-6}=\frac{-1}{-2}=\frac{1}{2}\)
=> \(\frac{1}{2}=\frac{1}{2}hay\frac{2+3}{4+6}=\frac{2-3}{4-6}\)
cho 3 số x,y,z thỏa mãn \(\frac{x}{2018}\)=\(\frac{y}{2019}\)=\(\frac{z}{2020}\)
CM : (x-z)3 =8.(x-y)2 .(y-z)
MN LÀM NHANH GIÚP MÌNH