1.(\(x^2-x+3\))(\(x^2-x-2\))\(+4\)
2.(\(x^2+5x+6\)) (\(x^2-15x+56\))\(-144\)
Phân tích
a)x(x+4)(x+6)(x+10)+128
b)x(x+1)(x+2)(x+3)+1
c)(x-1)(x-3)(x-5)(x-7)-20
d)(x+2)(x+3)(x+7)(x-8)-144
e)(x2+5x+6)(x2-15x+56)-144
f)(x2+6x+8)(x2+6x+8)-24
g)(x2-6x+5)(x2-10x+21)-20
h)(x2-11x+28)(x2-7x+10-72)
phân tích đa thức thành nhân tử
1.(x+2)(x+3)(x+4)(x+5)-24
2.(x-1)(x-3)(x-5)(x-7)-20
3.x(x-1)(x-1)(x+2)-3
4.(x-7)(x-5)(x-4)(x-2)-72
5.(x^2+6x+8)(x^2-8x+15)-24
6.(x^2-6x+5)(x^2-10x+21)-20
7.(x^2+5x+6)(x^2-15x+56)-144
#Mn làm giúp mik vs#
#thank kiu#
a) \(\left(x^2+x-2\right)\left(x^2+9x+18\right)-28=0\)
b)\(\left(x^2+5x+6\right)\left(x^2-15x+56\right)-144=0\)
phân tích đa thức thành nhân tử
1.(x+2)(x+3)(x+4)(x+5)-24
2.(x-1)(x-3)(x-5)(x-7)-20
3.x(x-1)(x-1)(x+2)-3
4.(x-7)(x-5)(x-4)(x-2)-72
5.(x^2+6x+8)(x^2-8x+15)-24
6.(x^2-6x+5)(x^2-10x+21)-20
7.(x^2+5x+6)(x^2-15x+56)-144
#Mn làm giúp mik vs#
#thank kiu#
1) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x=t\)
\(\Rightarrow BT=\left(t+10\right)\left(t+12\right)-24\)
\(=t^2+22x+96=\left(t+11\right)^2-25\ge-25\)
Vậy GTNN của bt là - 25\(\Leftrightarrow x^2+7x+11=0\)
\(\Delta=7^2-4.11=5\)
\(\orbr{\begin{cases}x_1=\frac{-22+\sqrt{5}}{2}\\x_2=\frac{-22-\sqrt{5}}{2}\end{cases}}\)
2) \(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20\)
\(=\left(x-1\right)\left(x-7\right)\left(x-3\right)\left(x-5\right)-20\)
\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)
Đặt \(x^2-8x=t\)
\(\RightarrowĐT=\left(t+7\right)\left(t+15\right)-20\)
\(=t^2+22t+85=\left(t+11\right)^2-36\ge-36\)
Vậy GTNN của bt là - 36\(\Leftrightarrow x^2-8x+11=0\)
\(\Delta=\left(-8\right)^2-4.11=20\)
\(\orbr{\begin{cases}x_1=\frac{-22-\sqrt{20}}{2}\\x_2=\frac{-22+\sqrt{20}}{2}\end{cases}}\)
Nhầm, lộn tìm GTNN
a) \(\left(t+11\right)^2-25=\left(x^2+7x-16\right)\left(x^2+7x+36\right)\)
b) \(\left(x^2-8x+5\right)\left(x^2-8x+16\right)\)
\(=\left(x^2-8x+5\right)\left(x-4\right)^2\)
phân tích đa thức thành nhân tử
1.(x+2)(x+3)(x+4)(x+5)-24
2.(x-1)(x-3)(x-5)(x-7)-20
3.x(x-1)(x-1)(x+2)-3
4.(x-7)(x-5)(x-4)(x-2)-72
5.(x^2+6x+8)(x^2-8x+15)-24
6.(x^2-6x+5)(x^2-10x+21)-20
7.(x^2+5x+6)(x^2-15x+56)-144
#Mn làm giúp mik vs#
#thank kiu#
phân tích đa thức thành nhân tử
1.(x+2)(x+3)(x+4)(x+5)-24
2.(x-1)(x-3)(x-5)(x-7)-20
3.x(x-1)(x-1)(x+2)-3
4.(x-7)(x-5)(x-4)(x-2)-72
5.(x^2+6x+8)(x^2-8x+15)-24
6.(x^2-6x+5)(x^2-10x+21)-20
7.(x^2+5x+6)(x^2-15x+56)-144
#Mn làm giúp mik vs#
#thank kiu#
phân tích đa thức thành nhân tử
(x2+5x+6)(x2-15x+56)-144
giải giùm
Phân tích đa thức thành nhân tử
a, (6x+5)2 (3x+2)(x+1) - 35
b, 8(4x+1)(2x-3)(4x-3)(x+1) - 130
c, (4x+1)(2x-1)(3x+2)(x+1) - 4
d, (x+2)(x+3)2(x+4) -12
e, ( x2 +5x+6) (x2 - 15x + 56) -144
g, (x2 - 11x +28) (x2 - 7x + 10) -72
Phân tích đa thức thành nhân tử:
a. (6x+5)2 (3x+2) (x+1) - 35
b. 8(4x+1) (2x-3) (4x-3) (x+1) - 130
c. (4x+1) (12x-1) (3x+2) (x+1) -4
d. (x+2) (x+3)2 (x+4) - 12
e. (x2 +5x +6) (x2 -15x +56) - 144
g. (x2 -11x +28) (x2 -7x+10) -72
Mình đang cần gấp mong các bạn giúp đỡ mình!
a)
\((6x+5)^2(3x+2)(x+1)-35\)
\(=(36x^2+60x+25)(3x^2+5x+2)-35\)
\(=[12(3x^2+5x+2)+1](3x^2+5x+2)-35\)
\(=(12a+1)a-35=12a^2+a-35\) (đặt \(3x^2+5x+2=a)\)
\(=4a(3a-5)+7(3a-5)=(4a+7)(3a-5)\)
\(=(12x^2+20x+15)(9x^2+15x+1)\)
b)
\(8(4x+1)(2x-3)(4x-3)(x+1)-130\)
\(=8[(4x+1)(4x-3)][(2x-3)(x+1)]-130\)
\(=8(16x^2-8x-3)(2x^2-x-3)-130\)
\(=8(8a+21)a-130\) (Đặt \(2x^2-x-3=a\) )
\(=64a^2+168a-130=2(8a-5)(4a+13)\)
\(=2(8x^2-4x+1)(16x^2-8x-29)\)
c)
\((4x+1)(12x-1)(3x+2)(x+1)-4\)
\(=[(4x+1)(3x+2)][(12x-1)(x+1)]-4\)
\(=(12x^2+11x+2)(12x^2+11x-1)-4\)
\(=(a+2)(a-1)-4\) (đặt \(a=12x^2+11x\) )
\(=a^2+a-6=(a-2)(a+3)\)
\(=(12x^2+11x-2)(12x^2+11x+3)\)
d)
\((x+2)(x+3)^2(x+4)-12\)
\(=[(x+2)(x+4)](x+3)^2-12\)
\(=(x^2+6x+8)(x^2+6x+9)-12\)
\(=a(a+1)-12\) (Đặt \(x^2+6x+8=a\) )
\(=a^2+a-12=(a-3)(a+4)=(x^2+6x+5)(x^2+6x+12)\)
\(=(x+1)(x+5)(x^2+6x+12)\)
e)
\((x^2+5x+6)(x^2-15x+56)-144\)
\(=(x+2)(x+3)(x-8)(x-7)-144\)
\(=[(x+2)(x-7)][(x+3)(x-8)]-144\)
\(=(x^2-5x-14)(x^2-5x-24)-144\)
\(=a(a-10)-144=a^2-10a-144\) (đặt \(x^2-5x-14=a\))
\(=(a-18)(a+8)=(x^2-5x-32)(x^2-5x-6)\)
\(=(x^2-5x-32)(x-6)(x+1)\)
g)
\((x^2-11x+28)(x^2-7x+10)-72\)
\(=(x-7)(x-4)(x-2)(x-5)-72\)
\(=[(x-7)(x-2)][(x-4)(x-5)]-72\)
\(=(x^2-9x+14)(x^2-9x+20)-72\)
\(=a(a+6)-72\) (Đặt \(x^2-9x+14=a\) )
\(=a^2+6a-72=(a-6)(a+12)\)
\(=(x^2-9x+8)(x^2-9x+26)\)
\(=(x-1)(x-8)(x^2-9x+26)\)