Tìm x,y để P đạt GTNN \(P=3x^2+11y^2-2xy-2x+6y-1\)
Tìm x, y để P đạt gtnn: P = \(3x^2+11y^2-2xy-2x+6y-1\)
P=3x2+11y2-2xy-2x+6y-1=(x2+9y2-6xy)-2(x-3y)+1+2x2+2y2+4xy -2
=(x-3y-1)2+2(x+y)2-2\(\ge-2\)
MinP=-2 khi x=1/4 và y=-1/4
tìm x và y để biểu thức x^2 - 2xy + 6y^2 - 14x - 6y + 72 đạt GTNN
A= x^2 - 2x(y+7) + (y+7)^2 -(y+7)^2 + 6y^2 - 6y +72
=(x-y-7)^2 + 5(y^2 - 4y +4) +101
=(x-y-7)^2 + 5(y-2)^2 +101\(\ge\)101
\(\Rightarrow\)Min A= 101\(\Leftrightarrow\)x=9;y=2
Tìm giá trị nhỏ nhất của \(A=3x^2+11y^2-2xy-2x+6y-1\)
Lời giải:
\(A=3x^2+11y^2-2xy-2x+6y-1\)
\(\Leftrightarrow A=\left(x^2+y^2+\frac{1}{4}-2xy-x+y\right)+2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+10\left(y^2+\frac{1}{2}y+\frac{1}{16}\right)-2\)
\(\Leftrightarrow A=\left(x-y-\frac{1}{2}\right)^2+2\left(x-\frac{1}{4}\right)^2+10\left(y+\frac{1}{4}\right)^2-2\)
Thấy rằng \(\hept{\begin{cases}\left(x-y-\frac{1}{2}\right)^2\ge0\\\left(x-\frac{1}{4}\right)^2\ge0\\\left(y+\frac{1}{4}\right)^2\ge0\end{cases}}\Rightarrow A\ge-2\)
Vậy \(A_{min}=-2\Leftrightarrow\hept{\begin{cases}x-y-\frac{1}{2}=0\\x-\frac{1}{4}=0\\y+\frac{1}{4}=0\end{cases}\Leftrightarrow x=\frac{1}{4};y=\frac{-1}{4}}\)
1:Tìm x,y để các biểu thức sau đạt min
A=1892-2x2-y2+2xy-10x+14y
B=2x2+y2-2xy-4x+2(x-y)-5
C=x2+4y2-2xy-6y-10(x-y)+32
A chỉ đạt max
B=(x^2+y^2+1-2xy+2x-2y)+(x^2-4x+4)-10
B=(x-y+1)^2+(x-2)^2-10\(\ge\)-10
C=((x^2+y^2-2xy)-10(x-y)+25)+3(y^2-2y+1)+4
C=(x-y-5)^2+3(y-1)^2+4\(\ge\)4
bài 1 phân tích đa thức thành nhân tử 2x^2-12x+18+2xy-6y
bài 2 tìm GTNN của biểu thức P=x^2+y^2-2x+6y+12
bài 1:= \(2x\left(x-3\right)-6\left(x-3\right)+2y\left(x-3\right)\)
=\(2\left(x-3\right)\left(x+y-3\right)\)
bài 2:P=\(x^2-2x+1+y^2+6y+9+2\)
P=\(\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
vậy Pmin=2 khi x=1 và y=-3
tìm x,y để biểu thức đạt GTNN và GTNN là bao nhiêu
L=y2 -2xy +3x2 +2y -14x +1949
Tìm x, y, z để đa thức sau đạt GTNN: \(B=2x^2+2y^2+z^2+2xy-2yz-2x-4y\)
Tìm GTNN của biểu thức
C=2x^2+5x-1
D=x^2+y^2+4x-6y+7
E=2x^3+y^2+2x+6y+2xy+14
Tìm GTNN:
A=2x^2+2xy+y^2-2x-2y
b=x^2+xy+y^2-3y-3x
B=x^4-2x^3+3x^2-2x+1