Bạn nào biết cách tìm GTLN của x^2+5 và nêu phương pháp tìm GTLN
Các bạn chỉ cho mình từng dấu công nhá
+ Nếu mà 1 bài khong phân bietj rõ ra là tìm GTLN và GTNN thì làm sao để biết được câu nào là GTLN câu ào là giá trị nhỏ nhất ạ !
+ Khi mà tìm ra GTLN và GTNN ví dụ như (x+3/2)^2 + 3 >=3 . Thì khi tìm tại x bằng bao nhiêu thì tại sao chỉ lấy mỗi x+3/2 thôi mà không lấy cả (x+3/2)^2 + 3 = 0 ạ ( Số +3) đó tại sao không được cho vào để tìm khi x bằng bao nhiêu ạ
+1 còn tùy vào từng loại cần tìm nếu đơn giản là đa thức bậc 2 thì sử dụng máy tính hoặc cứ tìm thôi ;-;
+2 Vì \(m^2+3\ge3\) thì để dấu = xảy ra tức là : \(m^2+3=3\) \(\Leftrightarrow m^2=0\)
<=> m = 0 .
Cho x , y E Z a) Với giá trị nào của x thì biểu thức A = 1000 - |x+5| có GTLN ; tìm GTLN đó .
b) Với giá trị nào của x thì biểu thức B = | y - 3 | + 50 có GTLN ; tìm GTLN đó
c) Với giá trị nào của x và y thì biểu thức C = | x - 100 | + | y +200 | - 1 có GTLN ; tìm GTLN đó .
Chỉ mình cách tìm GTLN hay GTNN của biểu thức được không?
VD: Tìm GTLN của A = 1 - x^2 + 3*x
Tìm GTNN của B = x^2 - 5*x + 1
Bài 1: Tìm GTNN và GTLN của \(A=123+\sqrt{-x^2+6x+5}\)
Bài 2:Tìm GTNN và GTLN của \(A=\sqrt{-x^2+8x-12}-7\)
Bài 3: Tìm GTNN và GTLN của \(A=\sqrt{-x^2-x+4}\)
Tìm GTLN của biểu thức:
A=3xy-x^2-y^2
biết x và y là nghiệm của phương trình
cách tìm GTNN và GTLN và tìm số nguyên của một biểu thức ta làm như thế nào
\(#\)GTNN đưa về dạng \(A^2+m\) với \(m\) là hằng số khi đó ta được \(A^2\)\(+m\) ≥\(m\) sau đó tìm dấu "=" xảy ra khi nào ( Dấu bằng xảy ra khi A\(^2\)\(=0\)) sau đó kết luận .
VD : Tìm GTNN của \(A=\)\(x^2+2x+3\)
A \(=\left(x^2+2x+1\right)+2\)\(=\left(x+1\right)^2+2\) ≥ \(2\)
Dấu "=" xảy ra khi \(\left(x+1\right)^2=0=>x=-1\)
Vậy \(A_{min}=2< =>x=-1\)
\(#\)GTLN đưa về dạng \(k-B^2\) với \(k\) là hằng số khi đó ta tìm được \(k-B^2\)≤ \(k\) sau đó tìm dấu "=" xảy ra khi nào ( Dấu bằng xảy ra khi \(B^2=0\)) sau đó kết luận.
VD Tìm GTLN của \(B=10+4x-x^2\)
B\(=-x^2+4x-4+14\)\(=14-\left(x^2-4x+4\right)\)\(=14-\left(x-2\right)^2\) ≤ 14
Dấu "=" xảy ra khi \(\left(x-2\right)^2=0=>x=2\)
Vậy \(B_{max}=14< =>x=2\)
Bt: Tìm GTLN của bt : \(B=-x^2+\sqrt{5}x-2\). GTLN đó đạt đc khi nào?
đạt gtnn là 17/4 khi x=căn bậc hai của 5 rồi chia cho 2 (2 không nằm trong dấu căn)
Tìm GTLN của E= 5+(1-x)(x+2)(x+3)(x+6)
Dùng cách đặt ẩn t nếu được.
Ta có: \(E=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=5-\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=5-\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=5-\left(x^2+5x-6\right)\left(x^2+5x-6\right)\)
Đặt \(t=x^2+6x\)
\(\Rightarrow E=5+\left(t-6\right)\left(t+6\right)\)
\(=5+t^2-36\)
\(=t^2-31\)
Mà \(t^2\ge0\Rightarrow t^2-31\ge-31\)
\(\Rightarrow E\ge-31\)
Dấu "=" xảy ra \(\Leftrightarrow t^2=0\Leftrightarrow t=0\Leftrightarrow x^2+6x=0\Leftrightarrow x\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
\(E=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\\ E=5-\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\\ E=5-\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
Cách 1: \(E=5-\left(x^2+5x\right)^2+36=-\left(x^2+5x\right)^2+41\le41\)
\(E_{max}=41\Leftrightarrow x^2+5x=0\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=0\end{matrix}\right.\)
Cách 2: Đặt \(x^2+5x=t\)
\(\Leftrightarrow E=5-\left(t+6\right)\left(t-6\right)=5-t^2+36=-t^2+41\le41\\ E_{max}=41\Leftrightarrow t=0\Leftrightarrow x^2+5x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Các bạn ơi , có bạn nào biết mấy câu này không giúp mình với :
Tìm gtnn của biểu thức :
E (x)=(x^2 - 3x+10)(x+2)(x-5)
G(x) =(x^2+7x-1)(x^2+7x+1)
Và tìm gtln của biểu thức :
D =2x(1-2x)
A=x-x^2
Thank you các bạn nhiều !!!!