Cho x,y,z=0 thỏa mãn x^2+y^2+z^2=1 Tìm GTNN của M=1/16x^2+1/4y^2+1/z^2
Cho x,y,z=0 thỏa mãn x^2+y^2+z^2=1 Tìm GTNN của M=1/16x^2+1/4y^2+1/z^2
1 Cho x,y,z=0 thỏa mãn x^2+y^2+z^2=1 Tìm GTNN của M=1/16x^2+1/4y^2+1/z^2
2 Cho a^2-5a+2=0. Tính P=a^5-a^4-18a^3+9a^2-5a+2017-(a^4-40a^2+4) : a^2
Cho x,y,z=0 thỏa mãn x^2+y^2+z^2=1 Tìm GTNN của M=1/16x^2+1/4y^2+1/z^2
\(M=\dfrac{1}{16x^2}+\dfrac{1}{4y^2}+\dfrac{1}{16z^2}=\dfrac{1}{16}\left(\dfrac{1}{x^2}+\dfrac{2^2}{y^2}+\dfrac{4^2}{z^2}\right)\)
\(\Rightarrow M\ge\dfrac{1}{16}.\dfrac{\left(1+2+4\right)^2}{\left(x^2+y^2+z^2\right)}=\dfrac{49}{16}\)
\(\Rightarrow M_{min}=\dfrac{49}{16}\) khi \(\dfrac{1}{x^2}=\dfrac{2}{y^2}=\dfrac{4}{z^2}\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{1}{7}\\y^2=\dfrac{2}{7}\\z^2=\dfrac{4}{7}\end{matrix}\right.\)
cho x,y,z>0 thỏa mãn x+y<=z. tìm gtnn của: M=(x^2+y^2+z^2)(1/x^2+1/y^2+1/z^2)
Cho `x,y,z>`0 thỏa mãn `x+y+z>=3/2` tìm GTNN của biểu thức `A=x^2+y^2+z^2+1/x+1/y+1/z`
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+\frac{1}{2x}+\frac{1}{2x}\geq 3\sqrt[3]{\frac{1}{4}}$
Tương tự:
$y^2+\frac{1}{2y}+\frac{1}{2y}\geq 3\sqrt[3]{\frac{1}{4}}$
$z^2+\frac{1}{2z}+\frac{1}{2z}\geq 3\sqrt[3]{\frac{1}{4}}$
Cộng theo vế:
$A\geq 9\sqrt[3]{\frac{1}{4}}$ (đây chính là $A_{\min}$)
Dấu "=" xảy ra khi $x=y=z=\sqrt[3]{\frac{1}{2}}$
1.cho x,y,z thuộc R thỏa mãn x+y+z+xy+xz+yz=6. Tìm GTNN của : x^2+y^2+z^2
2. cho x,y>0 thỏa mãn x+1/y<=1. tìm GTNN: A=x/y+y/x
Cho các số x, y, z dương thỏa mãn\(x^2+y^2+z^2=1\). Tìm giá trị nhỏ nhất của biểu thức
\(M=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}\)
Bạn tham khảo tại đây:
Câu hỏi của hoangchau - Toán lớp 9 - Học toán với OnlineMath
Hoặc
Câu hỏi của Dang Quốc Hung - Toán lớp 8 - Học toán với OnlineMath
Áp dụng BĐT Cauchy - Schwarz ta có ;
\(M=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}=\frac{\left(\frac{1}{4}\right)^2}{y^2}+\frac{\left(\frac{1}{2}\right)^2}{y^2}+\frac{1}{z^2}\ge\frac{\left(\frac{1}{4}+\frac{1}{2}+1\right)^2}{x^2+y^2+z^2}\)
hay \(M\ge\frac{49}{16}\)
Vậy \(M_{min}=\frac{49}{16}\)
Dấu " = " xảy ra khi \(\frac{1}{4x^2}=\frac{1}{2y^2}=\frac{1}{z^2}\)
hay
\(x=\sqrt{\frac{1}{7}};y=\sqrt{\frac{2}{7}};z=\sqrt{\frac{4}{7}}\)
Cho các số x,y,z dương thoả mãn x^2 + y^2 + z^2 =1. Tìm giá trị nhỏ nhất của biểu thức M= 1/16x^2 + 1/4y^2 + 1/z^2
Giúp vớiiiiiiiiiiiiiiiiiii
\(M=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}\)
\(=\frac{1}{16x^2}+\frac{4}{16y^2}+\frac{16}{16z^2}\)
\(=\frac{1}{16}\left(\frac{1}{x^2}+\frac{4}{y^2}+\frac{16}{z^2}\right)\)
\(\ge\frac{1}{16}.\frac{\left(1+2+4\right)^2}{x^2+y^2+z^2}=\frac{49}{16}\)(Svac - xơ)
Vậy \(M_{min}=\frac{49}{16}\Leftrightarrow\frac{1}{x^2}=\frac{4}{y^2}=\frac{16}{z^2}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{\sqrt{21}}\\y=\frac{2}{\sqrt{21}}\\z=\frac{4}{\sqrt{21}}\end{cases}}\)
Cho sửa chỗ dấu "="
\("="\Leftrightarrow\frac{1}{x^2}=\frac{2}{y^2}=\frac{4}{z^2}=7\)
\(\Rightarrow\hept{\begin{cases}x=\sqrt{\frac{1}{7}}\\y=\sqrt{\frac{2}{7}}\\z=\frac{2}{\sqrt{7}}\end{cases}}\)hoặc \(\hept{\begin{cases}x=-\sqrt{\frac{1}{7}}\\y=-\sqrt{\frac{2}{7}}\\z=-\frac{2}{\sqrt{7}}\end{cases}}\)
๖²⁴ʱČøøℓ ɮøү ²к⁷༉ Sửa dấu "=" sai r kìa man.x,y dương nên đâu cần đến âm đâu ???
Cho x;y;z>0 thỏa mãn x+y+z=1
Tính GTNN của \(P=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
\(x^3+2x^2+3x+2=y^3\)
\(x^3+2x^2+3x=y^3-2\)
\(x\left(x^2+2x+3\right)=y^3-2\)
\(x=\frac{y^3-2}{x^2+2x+3}\)
đến đây tìm để \(x,y\in Z\) là xong
đép ba si tồ ơi anh làm kiểu j vậy e chẳng hiểu c éo j cả :)