Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hạo LÊ
Xem chi tiết
Diệp Băng Dao
30 tháng 12 2016 lúc 18:24

bạn à đây là tiếng anh ko phải là toán!

Minz Ank
Xem chi tiết
✿.。.:* ☆:**:.Lê Thùy Lin...
20 tháng 10 2020 lúc 20:24

Trong toán học, nguyên lý chuồng bồ câunguyên lý hộp hay nguyên lý ngăn kéo Dirichlet có nội dung là nếu như một số lượng n vật thể được đặt vào m chuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể.[1] Định lý này được minh họa trong thực tế bằng một số câu nói như "trong 3 găng tay, có ít nhất hai găng tay phải hoặc hai găng tay trái." Đó là một ví dụ của một đối số đếm, và mặc dù trông có vẻ trực giác nhưng nó có thể được dùng để chứng minh về khả năng xảy ra những sự kiện "không thể ngờ tới", tỉ như 2 người có cùng một số lượng sợi tóc trên đầu, trong 1 đám đông lớn có một số người mặc kiểu quần áo giống nhau, hoặc bất thình lình trong hộp thư nhận được một số lượng cực lớn thư rác.

Nguồn: Mạng

Khách vãng lai đã xóa
Phạm Hoàng Anh
Xem chi tiết
Nguyễn Hoàng Khang
25 tháng 4 2022 lúc 19:44

Nguyên lí Dirichlet chỉ ra rằng: Nếu có một lượng n vật thể bỏ vào m hộp với điều kiện là n>m thì sẽ có ít nhất một hộp có nhiều hơn 2 vật thể.

Ví dụ: Có ba con chim bồ câu được bỏ vào hai chiếc lồng, vậy thì mỗi lồng có 1 con chim bồ câu, con flaij 1 con chim bồ câu. Nếu để con chim bồ câu còn lại 1 trong 2 chiếc lồng thì sẽ có ít nhất 1 lồng có 2 con chim bồ câu.

Nguyen Nghia Gia Bao
Xem chi tiết
Nguyen Nghia Gia Bao
20 tháng 10 2016 lúc 20:40

Số học sinh có điểm kiểm tra từ 2 đến 9 là : 45 - 2 =43.

Ta có : 43 = 8.5 +3.

Như vậy, khi phân chia 43 học sinh vào 8 loại điểm kiểm tra ( từ 2 đến 9 ) thì theo nguyên lí Dirichlet luôn tồn tại ít nhất 5 + 1 =6 học sinh có điểm kiểm tra giống nhau (đpcm).

 

Kẹo dẻo
20 tháng 10 2016 lúc 20:43

Tự hỏi tự trả lời.

@phynit

Hà Minh Hiếu
Xem chi tiết
Nguyễn Xuân Đình Lực
2 tháng 8 2016 lúc 20:41

là gì vậy

HM Charizad
Xem chi tiết
dinh thao nguyen
17 tháng 2 2020 lúc 20:04

Chia tam giác đó thành 16 tam giác đều bằng nhau cạnh 1/4. Theo Dirichlet tồn tại 2 điểm cùng thuộc 1 tam giác và khoảng cách giữa chúng không lớn hơn 1/4 .

 Khen mình đi !!!

Khách vãng lai đã xóa
Lưu Phúc Bình An
4 tháng 2 lúc 20:38

Ghê!

 

Nguyễn Tuấn Minh
Xem chi tiết
Nguyễn Bích Hằng
Xem chi tiết
Noo Phước Thịnh
12 tháng 12 2017 lúc 15:46

Đánh dấu số h/s đó lần lượt là: a1,a2,....a9

Giả sử: a5 là học sinh lớp B

=>a4,a6 không thể cùng là học sinh lớp B

Th1:a4,a6 cùng thuộc lớp A khi đó a2,a6 cách đều a4.

a4,a8 cách đều a6 và a8 thuộc lớp B nên hiển nhiên a5 sẽ cách đều a2 và a8 (trái với giả thuyết)

Th2:a4 ,a6 cùng thuộc một lớp khác nhau.

Kmttq giả sử: a4 lớp A,a6 lớp B

Do a4 cách đều a3,a5 nên a4 thuộc lớp B. Do a6 cách đều a3 và a9 nên a9 thuộc lớp A.a5 cách đều a1 và a9 nên a1 thuộc lớp B....

tương tự như vậy hiển nhiên có:a7 đứng cách đều hai bạn cùng lớp A là a5,a9.(trái với giả thuyết)

Vậy có ít nhất một học sinh đứng cách hai bạn cùng lớp với mình một khoảng cách như nhau (đpcm)

Nguyễn Bích Hằng
12 tháng 12 2017 lúc 21:54

Mk hỏi là giải theo nguyên lí Dirichlet đc k

Trần Xuân Hoàng
Xem chi tiết
Tài Nguyễn Tuấn
9 tháng 5 2016 lúc 21:39

Toán Dirichlet là nếu như một số lượng vật thể được đặt vào m chuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể.

VD : Theo các nghiên cứu, trung bình mỗi người chỉ có chừng 100.000 đến 150.000 sợi tóc. Như vậy, ví dụ, ở Singapore có dân số hơn 3 triệu người thì ít nhất sẽ có 2 người có số sợi tóc giống hệt nhau.

Từ Tuấn Thành
Xem chi tiết
Nguyễn Trương Ngọc Thi
2 tháng 8 2016 lúc 13:57

Ta ký hiệu s(n) là tổng các chữ số của số n. 
Trước tiên ta cmr: "nếu số a là số đã cho có chữ số tận cùng bằng 0 (a chia hết cho 10) và sau a có ít nhất 9 số liên tiếp đã cho và s(a) chia cho 11 dư 0 hoặc 2, 3, ..., 10 thì trong các số đã cho có số mà tổng các chữ số chia hết cho 11" ♦. 
CM: 
Nếu s(a) chia cho 11 dư 0 thì ta có đ.p.c.m 
Nếu s(a) = 11b + r với 2 ≤ r ≤ 10 => 1 ≤ 11 - r ≤ 9 
=> số [a + (11 - r)] nằm trong các số đã cho do sau a có ít nhất 9 số đã cho. Có s([a + (11 - r)]) = s(a) + (11 - r) = 11(b + 1) (số a và a + (11 - r) chỉ khác nhau chữ số hàng đơn vị), tức số a + (11 - r) có tổng các chữ số chia hết cho 11 (đ.p.c.m) 

Trong 39 số liên tiếp phải có ít nhất 1 số chia hết cho 10. Ta gọi k là số nhỏ nhất trong 39 số đã cho mà chia hết cho 10. Ta cmr có ít nhất 29 số đã cho lớn hơn k. Thật thế, nếu chỉ có nhiều nhất 28 số đã cho lớn hơn k thì có nghĩa là có ít nhất 10 số đã cho nhỏ hơn k, do vậy trong 10 số đó có 1 số chia hết cho 10 mà lại nhỏ hơn k, mâu thuẫn với định nghĩa của số k. 
Ta xét các th: 
1. s(k) chia cho 11 dư 0 hoặc dư 2, 3, ..., 10. Từ ♦ => trong các số đã cho có số có tổng các chữ số chia hết cho 11 
2. s(k) = 11m + 1. Ta xét 2 th: 
2.1. chữ số hàng chục của k ≤ 8 
Do sau k có ít nhất 29 số đã cho nên số k + 10 nằm trong các số đã cho, và s(k + 10) = s(k) + 1 = 11m + 2 (số k + 10 chỉ khác số k bằng chữ số hàng chục tăng thêm 1), và sau (k + 10) có ít nhất 19 số đã cho nên theo ♦ trong các số đã cho có số mà tổng các chữ số chia hết cho 11 
2.2. Số k có chữ số tận cùng là 9...90 (p chữ số 9 với p ≥ 1) 
Số k + 10 có dạng 0...0 (có p + 1 chữ số 0). s(k + 10) = s(k) - 9p + 1 = 11(m - p) + 2(p + 1) (số k + 10 so với số k có các chữ số ở p hàng liên tiếp kể từ hàng chục giảm đi 9 và có chữ số ở hàng cao hơn tiếp theo tăng thêm 1). 
Nếp 2(p + 1) chia hết cho 11 hoặc dư 2, 3, ..., 10 thì s(k + 10) chia cho 11 dư 0, 2, 3, ..., 10 vậy theo ♦ trong các số đã cho có số mà tổng các chữ số chia hết cho 11 
Nếu 2(p + 1) chia 11 dư 1 => s(k + 10) = 11q + 1, mà số k + 10 có tận cùng bằng p + 1 chữ số 0 (ít nhất 2 chữ số 0 do p ≥ 1) nên với số k1 = (k + 10) + 19 có s(k1) = s(k + 10) + 1 + 9 = 11(q + 1) (do số (k + 1) + 19 và số (k + 1) chỉ khác nhau ở 2 chữ số cuối 19). Dĩ nhiên số k1 = k + 29 nằm trong 39 số đã cho do sau k có ít nhất 29 số đã cho, và có tổng các chữ số chia hết cho 11 

Vậy trong 39 số tự nhiên liên tiếp luôn tồn tại số có tổng các chữ số chia hết cho 11

Từ Tuấn Thành
2 tháng 8 2016 lúc 14:11

theo nguyên lý dirichlet cơ mà

Đinh Sơn Bách
29 tháng 3 2020 lúc 10:26

Trong 39 STN liên tiếp sẽ tồn tại dãy gồm 30 số sau:

( a0, a1, a2, a3, ...., a9 ) ; ( b0, b1, b2, b3, ...., b9 ) ; ( c0, c1, c2, ...., c9 )

Điều kiện: b = a + 1 ; c = b + 1 = a + 2

Gọi x là tổng các chữ số của a0 thì tổng của 30 số là :

( x, x + 1, x + 2, ..., x + 9 ) ; ( x + 1, x + 2, x + 3, ... , x + 10 ) ; ( x + 2, x + 3, x + 4, ... , x + 11 )

Vì trong dãy trên có dãy: x, x + 1, x + 2, ...., x + 11

Mà dãy đó là dãy gồm 12 STN liên tiếp nên tồn tại một số ( tổng ) chia hết 11

=> đpcm

Mecha night crow 6A3 đại kim

Khách vãng lai đã xóa