Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phước Nhanh Nguyễn
Xem chi tiết
Nguyễn Thị BÍch Hậu
21 tháng 5 2015 lúc 22:07

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

Nguyễn Thị BÍch Hậu
21 tháng 5 2015 lúc 22:18

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

Lai  DUC Tuyen
22 tháng 8 2017 lúc 17:50

x=1 nhe nhap minh di ma ket ban voi minh nhe

Trương Thanh Nhân
Xem chi tiết
ĐẶNG QUỐC SƠN
Xem chi tiết
Trần Lâm
Xem chi tiết
như phạm
Xem chi tiết
Nguyệt
2 tháng 12 2018 lúc 21:46

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

Nguyệt
2 tháng 12 2018 lúc 21:51

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

như phạm
3 tháng 12 2018 lúc 0:03

Thanks. <3

Không Tên
Xem chi tiết
Pain Địa Ngục Đạo
21 tháng 1 2018 lúc 22:31

super easy . tập làm đi cho não có nếp nhăn Giang ơi  :)

Lê Nhật Khôi
21 tháng 1 2018 lúc 23:06

Mik làm bài 3 nha

Để \(\frac{2}{x^2-6x+17}\)đạt GTLN thì

\(x^2-6x+17\)đạt GTNN

Mà \(x^2-6x\ge0\)Do 6x mang dấu trừ

Suy ra \(x^2-6x+17\ge17\)

Suy ra \(x^2-6x+17\)đạt GTNN khi

\(x^2-6x+17=17\)

\(\Leftrightarrow x^2-6x=0\)

Dấu ''='' xảy ra khi:

\(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Vậy \(\frac{2}{x^2-6x+17}\)đạt GTLN tại \(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Câu cuôi tương tự

Pain Địa Ngục Đạo
21 tháng 1 2018 lúc 23:10

Giang ơi thật sư t cx ko biết làm  nhưng t ngếu ngáo tí , làm theo cách  tao nghĩ   

1 . \(\frac{\left(x^2+2x\frac{1}{2}+\frac{1}{2}\right)-\frac{1}{2}+1}{\left(x+1\right)^2}\)

\(\left(x^2+\frac{1}{2}\right)^2+\frac{1}{2}>\frac{1}{2}\)    \(\left(x+1\right)^2\ge0\) dấu = xảy ra khi x=-1

vậy Min của P là 1/2 

2:  tương tự câu 1

\(\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

dưới mẫu cũng tương tự vậy Min của  P là \(\frac{\frac{1}{2}}{\frac{1}{2}}=1\)

bài 3 tìm Gía trị lớn nhất     \(\frac{2}{\left(x^2-3\right)^2+8}\) vậy Min của mẫu là 8 tức là dấu > mà nó ở dưới mẫu sẽ biến thành dấu <

suy ra  \(q< \frac{2}{8}\)

câu 4 

\(\frac{3}{-\left(x^2+4x+2\right)-8}=\frac{3}{-\left(x+2\right)^2-8}\)  vì -(x+2)^2 nhỏ hơn 0  suy ra max là 8 

dấu max là dâu < mà ở dưới mẫu sẽ biến thành > 

vậy min của Q là 3/-8

Lê Thụy Sĩ
Xem chi tiết
cao van duc
10 tháng 7 2018 lúc 21:14

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

HUYNHTRONGTU
4 tháng 5 2021 lúc 15:00

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

Khách vãng lai đã xóa
Lê Thụy Sĩ
Xem chi tiết
Lê Thụy Sĩ
Xem chi tiết