chứng minh tồn tại số tự nhiên chia hết cho 37 và tổng các chữ số bằng 27
chứng minh rằng tồn tại một số tự nhiên chia hết cho 37 có tổng các chữ số bằng 27
Chứng minh tồn tại số tự nhiên chia hết cho 37 và có tổng các chữ số là:
a, 27
b, 37
Bn bấm vào đây :
Cho ba chữ số khác nhau và khác 0. Lập tất cả các số tự nhiên có ba chữ số gồm cả ba chữ số ấy. Chứng minh rằng tổng của chúng chia hết cho 6 và 37.- Trường Toán Trực tuyến Pitago – Giải pháp giúp em học toán vững vàng!
Ta thấy:
111 chia hết cho 37.
Mà số gồm 27 chữ số 1 sẽ chia hết cho 111(vì 27 chyia hết cho 3)
Đấy đc ý a.
Ý b đợi mk nghĩ 1 lúc nx
Đừng tk vội khi nào mk nghĩ xong rồi tk sau cx đc
chứng minh rằng tồn tại một số tự nhiên chia hết cho 37 có tổng các chữ số bằng 37
Chứng minh rằng tồn tại một số tự nhiên chia hết cho 37 và có tổng các chữ số bằng 37
(Giúp mình đi mình đang cần gấp ai giải đúng mình cho 3 tích luôn)
theo dõi câu trả lời của bạn rồi k là xong
chứng minh rằng tồn tại 1 số tự nhiên chia hết cho 37 và tổng chia hết cho 37
CMR : Tồn tại một số tự nhiên chia hết cho 37 và có tổng các chữ số bằng
a)27.
b)37
(giúp mik làm nhanh nhé mik sẽ cho nhiều điẻm)
a)Ta thấy:
111 chia hết cho 37
Mà số gồm 27 chữ số 1 sẽ chia hết cho 111(do 27 chia hết cho 3)
b)mình chưa làm được
ghê đấy cũng biết hỏi bài cơ à
Cho 102 số tự nhiên bất kỳ. Chứng minh rằng tồn tại 2 số trong 102 số đã cho mà chúng có tổng hoặc hiệu chia hết cho 200
Tìm 1 số có 2 chữ số. Biết chữ số hàng chục bàng hiệu giữa số đó và số viết theo thứ tự ngược lại
Cho số tự nhiên M. Người ta đổi chỗ các chữ số của M để được số N gấp 3 lần số M. Chứng minh rằng số N chia hết cho 27
chứng minh rằng 19 số tự nhiên liên tiếp luôn tồn tại 1 số có tổng các chữ số chia hết cho 10
Xét 10 số đầu của dãy 19 số tự nhiên liên tiếp nên sẽ tồn tại 1 số có tận cùng bằng 0 , ta gọi số đó là \(\overline{a0}\) . Ta xét : \(\overline{a0}\) và 9 số tự nhiên tiếp theo :
\(\overline{a0},\overline{a1},\overline{a2},...,\overline{a9}\)
Gọi tổng các chữ số của \(\overline{a0}=k\Rightarrow\) tổng các chữ số của 10 số tự nhiên liên tiếp trên sẽ là : \(k,k+1,k+2,...,k+10\)
Dãy số : \(k,k+1,k+2,...,k+10\) tồn tại một số chia hết cho 10 \(\Rightarrow\) tồn tại một số của dãy : \(\overline{a0},\overline{a1},\overline{a2},...,\overline{a9}\) có tổng các chữ số chia hết cho 10 .
Vậy ...