Cho abc+def chia hết cho7.Chứng minh:abcdef chia hết cho 7
Cho abcdef=n
CM:Nếu abc-def chia hết cho7 thì N chia hết cho 7
Ta có : \(n=\overline{abcdef}=1000\overline{abc}+\overline{def}=6\left(\overline{abc}-\overline{def}\right)+994\overline{abc}+7\overline{def}\)\(=6.\left(\overline{abc}-\overline{def}\right)+7.142\overline{abc}+7\overline{def}\)
\(=6\left(\overline{abc}-\overline{def}\right)+7\left(142\overline{abc}+\overline{def}\right)\)
Vì \(\left(\overline{abc}-\overline{def}\right)⋮7\) nên \(6\left(\overline{abc}-\overline{def}\right)⋮7\)
Lại có \(7\left(142\overline{abc}+\overline{def}\right)⋮7\)
\(\Rightarrow n=6\left(\overline{abc}-\overline{def}\right)+7\left(142\overline{abc}+\overline{def}\right)⋮7\) (đpcm)
Cho abcdef= \(\frac{N}{def}\)
Chứng tỏ nếu abc - def chia hết cho7 thì N :7
Ta có : \(\overline{abcdef}=\frac{N}{\overline{def}}\Rightarrow1000\overline{abc}+\overline{def}=\frac{N}{\overline{def}}\)
\(\Rightarrow N=\overline{def}\left(1000\overline{abc}+\overline{def}\right)\)
Ta biến đổi : \(1000\overline{abc}+\overline{def}=\left(994\overline{abc}+7\overline{def}\right)+6\left(\overline{abc}-\overline{def}\right)=7.\left(142\overline{abc}+\overline{def}\right)+6\left(\overline{abc}-\overline{def}\right)\)
Vì \(\left(\overline{abc}-\overline{def}\right)⋮7\) nên \(6\left(\overline{abc}-\overline{def}\right)⋮7\)
Lại có \(7\left(142\overline{abc}+\overline{def}\right)⋮7\) => \(N=\overline{def}.\left[7.\left(142\overline{abc}+\overline{def}\right)+6\left(\overline{abc}-\overline{def}\right)\right]⋮7\)
cho abc chia hết cho7. Chứng tỏ rằng 2a + 3b + c chia hết cho 7
ta có : abc=100a+10b+c
=98a+2a+7b+3b+c
=(98a+7b)+(2a+3b+c)
mà abc chia hết cho 7 suy rs (98a + 7b )+ (2a+3b+c)chia hết cho 7
mà 98a+7b chia hết cho 7
nên 2a+3b+c chia hết cho 7
1)Cho 7.x+9.x chia hết cho 59 chứng minh 12.x+7.y chia hết cho 59
2)chứng minh rằng nếu abcdef chia hết cho 37 thì số abc+def chia hết cho 37
3)chứng minh rằng nếu số có 6 chữ số abcdef chia hết cho 32 thì 8.(abc+def) chia hết cho 32
ngọc ơi giờ này tao nhớ chúng mày lắm
Biết x-y chia hết cho7, hãy chứng minh rằng 11x-7y cũng chia hết cho 7.
Cho abcdef = N
Chứng tỏ nếu abc - def chia hết cho 7 thì N chia hết cho 7.
Giúp mình với
abcdef=abc.1000+def =abc.994 +abc.6 +def
=abc.994 +abc.6 -6def +7def =abc.994 +6.(abc-def) +7def
Vì abc.994=abc.7.142 chia hết cho 7
abc-def chia hết cho 7 =>6.(abc-def) chia hết cho 7
7.def chia hết cho 7
từ 3 ý trên =>abc.994 +6.(abc-def) +7def chia cho 7
vậy abcdef chia hết cho 7
tìm n thuộc N chứng tỏ rằng aba chia hết cho 7 nên có a +b chia hết cho7
Cho a + 5b chia hết cho7 với a ; b thuộc N . Chứng minh rằng 10a +b chia hết cho 7 .
Đặt A = a + 5b; B = 10a + b
Xét hiệu: 5B - A = 5.(10a + b) - (a + 5b)
= 50a + 5b - a - 5b
= 49b
Do A chia hết cho 7; 49b chia hết cho 7
=> 5B chia hết cho 7
Mà (5;7)=1 => B chia hết cho 7 hay 10a + b chia hết cho 7 (đpcm)
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
1.Cho a . b€N.chứng minh 3a+56 chia hết cho7 thì 2a+b chia hết cho7 2. x y €n chứng minh x_3y chia hết cho 5 thì 3x _ 4y chia hết cho5