giải phương trình vô tỉ
\(\sqrt{\left(x+3\right)^2}\) = 9
Giải phương trình vô tỉ:
\(\sqrt{x^2\left(x^2+1\right)+1}+\sqrt{3}\left(x^2+1\right)=3\sqrt{3}x\)
\(\sqrt{x^2.\left(x^2+1\right)+1}+\sqrt{3}.\left(x^2+1\right)=3\sqrt{3}.x\)
\(\Leftrightarrow\sqrt{x^4+x^2+1}+\sqrt{3}.x^2+\sqrt{3}=3\sqrt{3}.x\)
\(\Leftrightarrow\sqrt{x^4+x^2+1}+\sqrt{3}=3\sqrt{3}.x-\sqrt{3}.x^2\)
\(\Leftrightarrow\sqrt{x^4+x^2+1}=3\sqrt{3}.x-\sqrt{3}.x^2-\sqrt{3}\)
\(\Leftrightarrow\left(\sqrt{x^4+x^2+1}\right)^2=\left(3\sqrt{3}.x-\sqrt{3}.x^2-\sqrt{3}\right)\)
\(\Leftrightarrow x^4+x^2+1=-18x^3+3x^4+33x^2-18x+3\)
\(\Leftrightarrow x^4+x^2+1+18x^3-3x^4-33x^2+18x-3=0\)
\(\Leftrightarrow-2x^4-32x^2-2+18x^3+18x=0\)
\(\Leftrightarrow-2\left(x^4+16x^2+1-9x^3-9x\right)=0\)
\(\Leftrightarrow-2\left(x^3-8x^2+8x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow-2\left(x^2-7x+1\right)\left(x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-7x+1\right)\left(x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-7x+1\right)\left(x-1\right)^2=0\)
Nhưng vì \(x^2-7x+1\ne0\)nên:
\(x-1=0\Rightarrow x=1\)
\(\Rightarrow x=1\)
giải phương trình vô tỉ sau
\(x^3+\sqrt{\left(1-x^2\right)^3}=x\sqrt{2.\left(1-x^2\right)}\)
giải bất phương trình vô tỉ sau
\(\sqrt[4]{\left(x-3\right)\left(5-x\right)}+\sqrt[4]{x-3}+\sqrt[4]{5-x}+6\left(x-1\right)\sqrt{3\left(x-1\right)}< =x^3-3x^2+3x+29\)
giải các phương trình vô tỉ sau
1) \(2.\sqrt{2x-x^2}+4=3\left(\sqrt{x}+\sqrt{x+3}\right)\)
toán lớp 9 thì ai mà biết chỉ lớp 5 thôi
đáp án là : 0 bít !
ặc vô nghiệm nữa rồi mong ko sai đề tiếp :V
giải phương trình vô tỉ sau
\(x\left(x-1\right)\left(x-3\right)+3=\sqrt{4-x}+\sqrt{x+1}\)
câu 98
tách thành \(\sqrt[3]{9-x}-2=2x^2+3x-3\sqrt{5x-1}\)
\(< =>\sqrt[3]{9-x}-2=2x^2-2+x-1+\sqrt{4x^2}-\sqrt{5x-1}\)
rồi nhân liên hợp 2cái đầu bậc 3 nhé, nhân liên hợp 2 cái cuối, nghiệm là 1
111\(\sqrt{2x+1}+3\sqrt{4x^2-2x+1=3+\sqrt{8x^3+1}}\)
122\(\sqrt{x}+\sqrt[4]{x}+4\sqrt{17-x}+8\sqrt[4]{17-x}=34\)
tớ bh mới bđ học bài
chi,chi
114
\(2x^2+x+\sqrt{x^2+3}+2x\sqrt{x^2+3}\)
Giải phương trình vô tỉ:
\(3\left(\sqrt{2x+1}+\sqrt{x}-2x+11\right)=4\sqrt{2x^2+x}\)
giải phương trình vô tỉ sau
\(\left(3-x\right)\sqrt{x-1}+\sqrt{5-2x}=\sqrt{40-34x+10x^2-x^3}\)
\(\Leftrightarrow\left(3-x\right)\sqrt{x-1}+\sqrt{5-2x}=\sqrt{\left[\left(x-3\right)^2+1\right]\left(4-x\right)}\)
đặt 3-x=a;\(\sqrt{x-1}=b;\sqrt{5-2x}=c\Rightarrow b^2+c^2=4-x\)
\(\Leftrightarrow ab+c=\sqrt{\left(a^2+1\right)\left(b^2+c^2\right)}\)
<=>a2b2+2abc+c2=a2b2+b2+a2c2+c2
<=>b2-2abc+a2c2=0
<=>(b-ac)2=0
<=>b=ac
đến đây thì dễ rồi
Phương trình vô tỉ:
1Giải các phương trình vô tỉ:
a)\(\sqrt{x+8}-\sqrt{x+3}=\sqrt{3x-2}\)
b)\(\sqrt{X-1}-\sqrt{5X-1}=\sqrt{3X-2}\)
2.\(\sqrt{\left(X-1\right)X}+\sqrt{\left(X-2\right)X}=\sqrt{\left(X+3\right)X}\)
3.\(2\sqrt{2X-1}=X^2-2X\)
4a).\(\sqrt{X^2+X-12}=8-X\)
b)\(\sqrt{x^2-x-8}=\sqrt{4-2x}\)
5.\(\sqrt{x+1}+\sqrt{x}=\sqrt{x+2}\)
Mong mọi người giúp nha ♥♥♥ Toàn bộ 5 bài đều là giải phương trình vô tỉ ạ.
giải phương trình
\(\sqrt{3+x}+\sqrt{6-x}-\sqrt{\left(3+x\right)\left(6-x\right)}=3\)
giúp với nha, mình làm mà ko chắc lắm vì đg học phương trình vô tỉ, mn giúp nha
Đk: tự xác định
\(pt\Leftrightarrow\sqrt{x+3}-\left(\frac{1}{3}x+1\right)+\sqrt{6-x}-\left(-\frac{1}{3}x+2\right)-\sqrt{\left(x+3\right)\left(6-x\right)}=0\)
\(\Leftrightarrow\frac{x+3-\left(\frac{1}{3}x+1\right)^2}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{6-x-\left(-\frac{1}{3}x+2\right)^2}{\sqrt{6-x}-\frac{1}{3}x+2}-\sqrt{\left(x+3\right)\left(6-x\right)}=0\)
\(\Leftrightarrow\frac{-\frac{1}{9}\left(x+3\right)\left(x-6\right)}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}\left(x+3\right)\left(x-6\right)}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{\left(x+3\right)\left(x-6\right)}{\sqrt{-\left(x+3\right)\left(x-6\right)}}=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-6\right)\left(\frac{-\frac{1}{9}}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{1}{\sqrt{-\left(x+3\right)\left(x-6\right)}}\right)=0\)
Dễ thấy:\(\frac{-\frac{1}{9}}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{1}{\sqrt{-\left(x+3\right)\left(x-6\right)}}< 0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-6=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-3\\x=6\end{cases}}\)
Giải phương trình vô tỉ:\(\sqrt{x+6}-\sqrt{x-2}\left(1+\sqrt{x^2-4x-12}\right)=8\)