Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tuấn Tú
Xem chi tiết
Hoàng Trọng Hoàn
Xem chi tiết
pham ngoc huynh
Xem chi tiết
Thái Thị Trà My
Xem chi tiết
Nguyễn Minh Hoàng
Xem chi tiết
❤️ Jackson Paker ❤️
4 tháng 7 2021 lúc 11:42

Câu 1

 a,b,c là số nguyên tố nên: a,b,c∈N∗và a,b,c≥2 Do đó,

ta có: c≥\(2^2\)+\(2^2\)>2 màc là số nguyên tố nên c phải là số lẻ:

Ta có: a\(a^b\)+\(b^a\)+3 là số lẻ nên tồn tại \(a^b\) hoặc b\(b^a\) chẵn mà a,b là số nguyên tố nên a=2 ∨ b=2 Xét 1 trường hợp, trường hợp còn lại tương tự: b=2 và a phải là số lẻ nên a=2k+1 k∈N∗

Ta có: \(2^a\)+\(a^2\)=c Nếu a=3 thì c=17 thỏa mãn. Nếu a>3 mà a là số nguyên tố nên a không chia hết cho 3 suy ra:\(a^2\)chia 3 dư 1. Ta có: \(2^a\)=\(2^{\left(k+1\right)}\)=\(4^k\).2−2+2=(\(4^k\)−1).2+2=BS(3)nên chia 3 dư 2 Từ đó, 2^a+a^2 ⋮3 nên c⋮3 suy ra c là hợp số, loại.

Vậy (a;b;c)=(2;3;17);(3;2;17)

tiến Đạt Đặng
Xem chi tiết
Nguyễn Tiến Thành
4 tháng 9 2023 lúc 18:03

a2+b2+c2=(a2+2ac+c2)-2ac+b2=(a+c)2-2b2+b2=(a+b+c)(a-b+c)
mà a2+b2+c2 là số nguyên tố và a+b+c>a-b+c nên a-b+c=1
=> a+c=b+1 => a2+2ac+c2=b2+2b+1 => a2+b2=2b+1=2a+2c+1+1
=>a2-2a+1+c2-2c+1=0 => (a-1)2+(c-1)2=0=>a=c=1=>b=1
Vậy (a,b,c) cần tìm là (1,1,1)

Hoàng Linh Chi
Xem chi tiết
Hồ Mỹ linh
Xem chi tiết
Hoàng Phương
Xem chi tiết
doremon
18 tháng 7 2015 lúc 19:20

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

Trần Thị Loan
18 tháng 7 2015 lúc 19:30

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

My
14 tháng 8 2016 lúc 15:35

 câu a là p ko có giá trị chớ