Cho △ABC, \(\widehat{B}=60^0,\widehat{C}=75^0,BC=2cm\). D là điểm thuộc tia đối của tia AC sao cho AD=\(\sqrt{2}cm\).Tính \(\widehat{BDC}\)
Các bạn giúp mình với vì ngày mai mình phải nộp rồi
Cho tam giác ABC với \(\widehat{B}\)= 60o,\(\widehat{C}\)= 75o,BC= 2 cm. Gọi D là điểm nằm trên tia đối của tia AC sao cho AD = \(\sqrt{2}\)cm. Tính \(\widehat{BDC}\)
Cho A và B là 2 điểm thuộc đường thẳng a. Biết AB=4cm.
1) Trên tia AB lấy điểm C sao cho B là trung điểm của đoạn thẳng AC. Tính AC và BC.
2) Trên đường thẳng a lấy điểm D sao cho BD=2cm. Nói D là trung điểm của đoạn thẳng BC là đúng hay sai? Vì sao?
3) Kẻ tia Bx và tia By sao cho \(\widehat{xBC}\)=300; \(\widehat{yBC}\)=600. Tính \(\widehat{xBy}\)?
1) có B là trung điểm của AC => AB = BC = 4 cm
AB + BC = AC
hay 4 + 4 = AC
=> AC = 8 (cm)
2) có 2 = 4 : 2
hay BD = BC : 2
=> D là trung điểm của đoạn thẳng BC
3) có góc xBC + góc xBy = góc yBC
hay 30 0 + góc xBy = 600
=> góc xBy = 600 - 300
=> góc xBy = 300
Các bn ơi cho mình hỏi
Cho ΔABC có \(\widehat{B}\) = 750; \(\widehat{C}\) = 600 .Trên tia đối của tia CB lấy điểm D sao cho CD = \(\frac{1}{2}\)BC . Tính \(\widehat{ADC}\)
Cho tam giác ABC và BC=5cm. Điểm M thuộc tia đối của tia CB sao cho CM=3cm
a) Tính độ dài BM
b) cho biết \(\widehat{BAM}=80^0,\widehat{BAC}=60^0\)Tính\(\widehat{CAM}\)
c) Vẽ các tia Ã, Ây lần lượt là tia phân giác của \(\widehat{BAC}\)và\(\widehat{CAM}\). Tính\(\widehat{xAy}\)
a) Vì M, B thuộc 2 tia đối nhau CB và CM
=> C nằm giữa B và M
=> BM = BC + CM =8 (cm)
b) Vì C nằm giữa B, M
=> Tia AC nằm giữa tia AB và tia AM
=> góc CAM = góc BAM - góc BAC = 20 độ
c) Ta có :
Góc xAy = góc xAC + góc CAy = 1/2 góc BAC + 1/2 góc CAM
= 1/2 (góc BAC + góc CAM) = 1/2 góc BAM 1/2 x 80 độ = 40 độ
Cho tam giác ABC cân tại A ; \(\widehat{B}\)=50º
a)Tính \(\widehat{C}\)và \(\widehat{A}\)
b)Gọi M là trung điểm của BC.Trên tia đối của tia MA lấy điểm D sao cho MD=MA.C/m tam giác ABD là tam giác cân
c)Trên AB,AC lần lượt lấy điểm E,F sao cho AE=AF.C/m EF//BC
d)Từ E kẻ đường thẳng vuông góc BC cắt BD tại K.C/m F,M,K thẳng hàng
Giúp mình nhé mai mình nộp rồi
Cho tam giác ABC có \(\widehat{B}\)nhọn và \(\widehat{B}=2\widehat{C}\)Dựng đường cao AH. Trên tia đối tia BA lấy điểm E sao cho BE=BH.
CHỨNG MINH:
\(a.\widehat{BHE=\widehat{C}}\)
b. Đường thẳng EH đi qua trung điểm của cạnh AC
Giúp mình với ngày mai kiểm tra rồi
Tam giác ABC có \(\widehat{A}\)= 900, AB < AC. Lấy D c AC sao cho AB = AD. Lấy E c tia đối của tia AB sao cho AE = AC.
a) CM: DE = BC
b) CM: DE vuông góc với BC
c)Biết 4\(\widehat{B}\)=5\(\widehat{C}\). Tính\(\widehat{AED}\)
Cho \(\Delta ABC\). Điểm D trên tia đối của tia BC. Vẽ tia Dm sao cho các góc \(\widehat{BDm}\)và \(\widehat{ABD}\) so le trong. Cho biết \(\widehat{ABC}=2\widehat{ABD},\widehat{BDm}=60^0\). CMR AD// CE
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của BD. Trên tia đối của tia AC lấy điểm E sao cho A là trung điểm của EC.
a) Chứng minh ED = BC; ED//BC
b) Tia phân giác của \(\widehat{EDA}\)cắt AE tại M. Tia phân giác của \(\widehat{ABC}\)cắt AC tại N. Chứng minh tam giác EMD = tam giác CNB
c) Gọi K là trung điểm của MD, H là trung điểm của BM. Chứng minh K,A,H thẳng hàng/
Các bạn giải hộ mình nha mai mình nộp rùi Thank you
CM : a)Xét t/giác ABC và t/giác ADE
có AB = AD (gt)
góc EAD = góc BAC (đối đỉnh)
AC = AE (gt)
=> t/giác ABC = t/giác ADE (c.g.c)
=> ED = BC (hai cạnh tương ứng) (Đpcm)
=> góc E = góc C (hai góc tương ứng)
Mà góc E và góc C ở vị trí so le trong
=> ED // BC (Đpcm)
b) Ta có: t/giác ABC = t/giác ADE (cmt)
=> góc D = góc B (hai góc tương ứng) (1)
Mà góc EDM = góc MDA = góc D/2 (2)
góc ABN = góc NBC = góc B/2 (3)
Từ (1); (2); (3) => góc EDM = góc NBC
Xét t/giác EMD và t/giác CNB
có ED = BC (cmt)
góc EDM = góc NBC (cmt)
góc E = góc C (cmt)
=> t/giác EMD = t/giác CNB (g.c.g) (Đpcm)
c) Ta có: t/giác EMD = t/giác CNB (cmt)
=> MD = BN (hai cạnh tương ứng)
Mà MK = KD = MD/2
BH = HN = BN/2
=> KD = BH
Từ (1); (2); (3) => góc MDA = góc ABN
Xét t/giác ADK và t/giác ABN
có AD = AB (gt)
góc MDA = góc ABN (cmt)
KD = BH (cmt)
=> t/giác ADK = t/giác ABN (c.g.c)
=> góc KAD = góc BAH (hai góc tương ứng)
Do B,A,D là ba điểm thẳng hàng nên góc BAM + góc MAK + góc KAD = 1800
hay góc BAM + góc MAK + góc BAH = 1800
=> ba điểm K, A,H thẳng hàng (Đpcm)