Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thanh Vy
Xem chi tiết
Nguyệt
8 tháng 12 2018 lúc 13:12

\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)

 \(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)

\(x^2+1\ge1\). dấu = xảy ra khi x2=0

=> x=0

Vậy \(B_{min}\Leftrightarrow x=0\)

ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)

dấu = xảy ra khi \(x+1=0\)

\(\Rightarrow x=-1\)

Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)

❤  Hoa ❤
8 tháng 12 2018 lúc 17:22

Để A xác định 

\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x^2-1\ne0\\x^2-2x+1\ne0\end{cases}}\)

\(\Rightarrow x^2-1\ne0\)

\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b, 

Nhật Hòa
Xem chi tiết
Cố gắng hơn nữa
Xem chi tiết
Quỳnh Đỗ
3 tháng 3 2017 lúc 11:52

Min la 3/4

Phạm Công Bằng
3 tháng 3 2017 lúc 12:01

Ta có:

\(\frac{x^2+x+1}{x^2+2x+1}\)=\(\frac{0,75x^2+1,5x+0,75}{x^2+2x+1}\)+\(\frac{0,25x^2-0,5x+0,25}{x^2+2x+1}\)

=\(\frac{3}{4}\)+\(\frac{0,25\left(x-1\right)^2}{\left(x+1\right)^2}\)>=\(\frac{3}{4}\)

Cố gắng hơn nữa
3 tháng 3 2017 lúc 14:34

mình nghĩ đặt x+1=t rồi suy ra x=t-1 rồi tý nữa lại đặt y=1/t dễ hơn là tách nhỏ thế này

Lê Thị Bích Chăm
Xem chi tiết
o0o I am a studious pers...
13 tháng 8 2016 lúc 19:10

Điều kiện : \(x^2-9\ne0\Rightarrow\orbr{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)

Để \(\frac{3x-2}{x^2-9}=0\)

\(\Rightarrow3x-2=0\)

\(\Rightarrow x=\frac{2}{3}\)

Bạch Trúc
13 tháng 8 2016 lúc 19:09

Để phân thức \(\frac{3x-2}{x^2-9}=0\)thì \(3x-2=0\)

\(3x=2\)

\(x=\frac{2}{3}\)

Trần Nam Phong
13 tháng 8 2016 lúc 19:25

Câu thứ 2 nha: 

A = \(\frac{6x^2-4x+4}{x^2}\)\(\frac{2x^2+4x^2-4x+1}{x^2}\)\(2+\frac{\left(x-2\right)^2}{x^2}\)

Đặt B = \(\frac{\left(x-2\right)^2}{x^2}\)

Do x khác 0 =>\(\left(x-2\right)^2>=0\)và \(x^2\)\(>0\)

Cho nên giá trị nhỏ nhất của phân thức A đã nêu là giá trị nhỏ nhất của phân thức B.

=> Min B = \(\frac{0}{x^2}\)= 0

=> Min A = 2 + 0 = 2

Dấu "=" xảy ra khi và chỉ khi (x-2)= 0

=> x-2 = 0

=> x = 2

Ngô Thị Yến Nhi
Xem chi tiết
shitbo
30 tháng 11 2018 lúc 15:59

\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)

\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)

\(\Rightarrow A_{max}=\frac{3}{4}\)

b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)

Phạm Tuấn Đạt
30 tháng 11 2018 lúc 16:15

\(A=\frac{3}{\left(x+2\right)^2+4}\)

Để A max

=>(x+2)^2+4 min

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)

Vậy Min = 4 <=>x=-2

Vậy Max A = 3/4 <=> x=-2

\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow B\ge0+0+1=1\)

Vậy MinB = 1<=>x=-1;y=-3

Xem chi tiết
Phạm Kim Tuyền
Xem chi tiết
Minh Hiền
8 tháng 7 2016 lúc 14:29

a. A = 5.(x - 2)2 + 1

Ta có: (x - 2)\(\ge\)0 => 5.(x - 2)2 \(\ge\)0 => 5.(x - 2)2 + 1 \(\ge\)1

Do đó A có GTNN là 1

<=> x - 2 = 0

<=> x = 2

b. B = 4 - (1/2 - x)2

Ta có: (1/2 - x)2 \(\ge\)0

=> 4 - (1/2 - x)2 \(\le\)4

Do đó B có GTLN là 4

<=> 1/2 - x = 0

<=> x = 1/2

Thuy Nguyen
Xem chi tiết
Ninh Thế Quang Nhật
11 tháng 2 2017 lúc 12:31

1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)

Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)

Vậy ........

2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> x = 2

Vậy ..........

nông huyền nga
Xem chi tiết