Tìm các số tự nhiên a,b,c sao cho 2016 mũ a = 2015 mũ b + 2014 mũ c
1. Tìm hai số tự nhiên a, b [ a > b ] sao cho tổng của ƯCLN và BCNN của chúng là 10.
2. Tìm các số tự nhiên a, b, c sao cho 2016 mũ a = 2015 mũ b + 2014 mũ c.
1,(a,b)+[a,b]=10
Gọi ƯCLN(a,b) là d
BCNN(a,b) là m, ta có
a=dm (m,n)=1
a-dn m>n
=> [a,b]=dmn
Ta thấy (a,b)+[a,b]=10
Mà (a,b)=d;[a,b]=dmn
=> d+dmn=10 => d(mn+1)=10
=> d và mn+1 đều thuộc Ư(10)
Ư(10)={1;2;5;10}
d,mn+1 thuộc {1;2;5;10}
Ta có bảng sau
d | mn+1 | mn | m | n | a | b |
1 | 10 | 9 | 9 | 1 | 9 | 1 |
2 | 5 | 4 | 4 | 1 | 8 | 2 |
5 | 2 | 1 | bỏ | bỏ | bỏ | bỏ |
10 | 1 | 0 | bỏ | bỏ | bỏ | bỏ |
BẠN TỰ KẾT LUẬN NHÉ!
Bài 1 :Cho a = 2 mũ 1 +2 mũ 2 + 2 mũ 3 +.... + 2 mũ 100 .Tìm x thuộc N sao cho a+2=2 mũ x
Bài 2 : Có hay không 3 số tự nhiên lẻ a,b,c thỏa mãn a mũ 2 + b mũ 2 - c mũ 2 = 2016
CẢM ƠN CÁC BẠN ĐÃ TRẢ LỜI . THANK YOU SO MUCH<3
\(a=2^1+2^2+2^3+...+2^{100}\)
\(2a=2^2+2^3+2^4+...+2^{101}\)
\(2a-a=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(a=2^{101}-2\)
\(a+2=2^{101}-2+2=2^{201}\)
\(\Rightarrow x=101\)
\(a=2^1+2^2+2^3+...+2^{100}\)
\(2a=2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(2a-a=\left(2^2+2^3+2^4+...+2^{99}+2^{100}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(a=2^{99}-2\)
\(a+2=2^{99}-2+2=2^{99}\)
\(\Rightarrow x=99\)
\(a=2^1+2^2+2^3+...+2^{100}\)
\(2a=2^2+2^3+2^4+...+2^{100}+2^{101}\)
\(2a-a=2^2+2^3+...+2^{100}+2^{101}-2-2^2-2^3-...-2^{99}-2^{100}\)
\(a=2^{101}-2\)
C/M rằng với mọi số tự nhiên n thì
a,n mũ 2+n+2014 chia hết cho 2
b,n mũ 2+n+2016 không chia hết cho 5
a) Nếu n là số chẵn thì n2 là số chẵn
Số chẵn + với số chẵn sẽ có kết quả là số chẵn
Mà số chẵn + 2014 thì ra k/q là chẵn, số chẵn luôn chia hết cho 2
Trình bày nó k được ổn lắm bn ak
a) Tìm số tự nhiên a,b thỏa mãn 10 mũ a+483=b mũ 2
b) Tìm các số tự nhiên a, b,c thỏa mãn: a mũ 2+ab+ác=20×ab+b mũ 2+BC=180×ac+BC+c mũ 2=200
a) \(10^a+483=b^2\) (*)
Nếu \(a=0\) thì (*) \(\Leftrightarrow b^2=484\Leftrightarrow b=22\)
Nếu \(a\ge1\) thì VT (*) chia 10 dư 3, mà \(VP=b^2\) không thể chia 10 dư 3 nên ta có mâu thuẫn. Vậy \(\left(a,b\right)=\left(0,22\right)\) là cặp số tự nhiên duy nhất thỏa mãn điều kiện bài toán.
(Chú ý: Trong lời giải đã sử dụng tính chất sau của số chính phương: Các số chính phương khi chia cho 10 thì không thể dư 2, 3, 7, 8. Nói cách khác, một số chính phương không thể có chữ số tận cùng là 2, 3, 7, 8)
b) Bạn gõ lại đề bài nhé, chứ mình nhìn không ra :))
tìm chứ số tận cùng của số; A = 20142015^2016
chú thích ( 2014 mũ 2015 mũ 2016 )
Những số có tận cùng là 5 thì mũ bao nhiêu cũng vẫn sẽ có tận cùng là 5 và nó có dạng:\(...5^x=...5\)
Vậy 2015^2016= một số có tận cùng là 5
Những số có tận cùng là 4 mà số mũ của nó là số lẻ thì nó sẽ có số tận cùng là 4 và nó có dạng:\(...4^x=...4\)
Vì 2015^2016 là số lẻ nên 2014^2015^2016 sẽ có số tận cùng là 4
cho minh nha
Cho 2 số tự nhiên a,b .chứng tỏ rằng nếu tích a.b chẵn thì bao giờ cũng tìm được 2 số tự nhiên c,d sao cho a mũ 2+b mũ 2+c mũ 2=d mũ 2
Cho a là số tự nhiên. Tìm số tự nhiên n sao cho a mũ n= a mũ 2016
Tìm các số tự nhiên a,b,c sao cho 2016^a=2015^b+2014^c
Cho a, b, c, d là các số tự nhiên khác 0; a.b = c.d.CMR a mũ n+b mũ n+c mũ n +d mũ n là hợp số
Vì a, b, c, d là các số tự nhiên khác 0, nên a, b, c, d đều lớn hơn hoặc bằng 2.
Giả sử a^nb^nc^nd^n là số nguyên tố, tức là không thể phân tích thành tích của các số tự nhiên khác 1.
Ta có:
a^nb^nc^nd^n = (a^n)(b^n)(c^n)(d^n)
Vì a, b, c, d đều lớn hơn hoặc bằng 2, nên a^n, b^n, c^n, d^n đều lớn hơn hoặc bằng 2.
Vậy, (a^n)(b^n)(c^n)(d^n) là tích của ít nhất 4 số tự nhiên lớn hơn hoặc bằng 2.
Do đó, a^nb^nc^nd^n không thể là số nguyên tố.
Vậy, a^nb^nc^nd^n là hợp số.