Tìm m thuộc N, để m < 20 biết 222...2 (m chữ số 2 ) chia hết cho 9
1 Tính:
A= 9+99+999+...+999...9 (30 chữ số 9)
B=1+11+111+...+111...1( 20 chữ số 1)
C= 2+22+222+...+222...2 (40 chữ số 2)
2. Cho M= { 1;13;21;29;52}. Tìm x;y thuộc M để 30 < x-y < 50
3. tìm a;b thuộc N để a+b = a x b
4,5C=9+99+999+...+99999...99(40 chữ số 9)
4,5C+40=(9+1)+(99+1)+...+(99999999....9+1)
4,5C+40=10+100+1000+...+1000000...00(40 chữ số 0)
4,5C+40=10+102+103+...+1040
4,5C+40=1041-10
C=(1041-10)-40:4,5
a) Tìm n thuộc Z để 2n2+3n+2 chia hết cho n+1
b) Tìm m,n thuộc Z biết mn-n-m=1
c) Cho m,n là 2 số chính phương lẻ liên tiếp
CMR: mn-m-n+1 chia hết cho 192
Tìm m thuộc N, để m2 5m 9 chia hết cho m 2
tìm chữ số m,n để
56m7n chia hết cho cả 2,5 và 3
4m72n chia hết cho 5 và 9
2m4n khi chia cho 5 cũng như 3 đều dư 2
7m8n chia hết cho 9 và m-n=2
cho A=8+12+x+16+18(x thuộc N).tìm điều kiện của x để: a,A chia hết cho 4 b,A kho chia hết cho 4 bài 2: cho B=8+12+9+m+12+n+1(m,n thuộc N) tìm điều kiện của m,n để: B chia hết cho 3,B kho chia hết cho 3 bài 3:hiệu sau chia hết cho những số nào trong các số 3;5;7;9 A=3x5x7x9x...x11-60
AI làm nhanh mk tik cho nha
Tìm m thuộc N, để
m2 + 5m + 9 chia hết cho m +2
a)Cho M=4^0+4^1+4^2+4^3+....+4^9.Tìm x biết 2^x=3M
b)Cho A =8n+111111111.......111(n chữ số 1)(n thuộc n sao).Chứng minh A chia hết cho 9
Bài 1 : cho 2 số tự nhiên m,n thỏa mãn đẳng thức 24.m^4 +1 = n^2. CMR tích số (m.n) chia hết cho 5
Bài 2: Tìm n thuộc N để (n^10+1) chia hết cho 10.
Bài 3: Tìm n thuộc N để (n^2+n+1) chia hết cho n^2+1
Bài 4:Tìm n thuộc N để ( n+5)(n+6) chia hết cho 6n
Bài 5: Tìm n thuộc N để ( 3n^2+3n+7) chia hết cho 5
Bài 6: Tìm n thuộc N để (2^n-1) chia hết cho 7
Bài 7 : Tìm n thuộc N để (3^n+63) chia hết cho 72
Bài 8: Cho n thuộc N* ; (n,10)=1. CMR : (n^4-1) chia hết cho 40
Bài 9: Cho n thuộc N* . CMR : A= (2^3n+1 + 2^3n-1 +1) chia hết cho 7
Bài 10: Tìm x,y sao cho xxyy( có gạch trên đầu) là số chính phương
Bài 11: Tìm x, y sao cho xyyy( có gạch trên đầu) là số chính phương
trời ơi những câu nào tương tự thì hỏi lmj hỏi 1 câu rồi tự làm tương tự!
1. Tìm số nguyên n để : a. n + 5 chia hết cho n - 1 b. 2n - 4 chia hết cho n + 2 c. 6n + 4 chia hết cho 2n + 1 d. 3 - 2n chia hết cho n + 1
2. Tìm số tự nhiên có 4 chữ số abcd biết nó thỏa mãn 3 điều kiện sau : a. c là chữ số có tận cùng của số M = 5+ 5^2 + 5^3 + ...+ 5^101 b. abcd chia hết cho 25 c. ab = a + b^2
3. Tìm x,y thuộc Z biết : a. xy + 3x - 7y = 21 b. xy + 3x - 2y = 11
a)Ta có:
\(\left(n+5\right)⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1+6\right)⋮\left(n-1\right)\)
\(\Rightarrow6⋮\left(n-1\right)\)
Ta có bảng sau:
\(n-1\) | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -5 | -2 | -1 | 0 | 2 | 3 | 4 | 7 |
TM | TM | TM | TM | TM | TM | TM | TM |
b)\(\left(2n-4\right)⋮\left(n+2\right)\)
\(\Rightarrow\left(2n+4-8\right)⋮\left(n+2\right)\)
\(\Rightarrow8⋮\left(n+2\right)\)
Ta có bảng sau:
n+2 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
n | -10 | -6 | -4 | -3 | -1 | 0 | 2 | 6 |
TM | TM | TM | TM | TM | TM | TM | TM |
c)Ta có:
\(\left(6n+4\right)⋮\left(2n+1\right)\)
\(\Rightarrow\left(6n+3+1\right)⋮\left(2n+1\right)\)
\(\Rightarrow1⋮\left(2n+1\right)\)
Ta có bảng sau:
2n+1 | -1 | 1 |
2n | -2 | 0 |
n | -1 | 0 |
d)Ta có:
\(\left(3-2n\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(-2n-2+5\right)⋮\left(n+1\right)\)
\(\Rightarrow5⋮\left(n+1\right)\)
Ta có bảng sau:
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
Ta có:
\(M=5+5^2+5^3+...+5^{101}\)
\(\Rightarrow M=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)+5^{101}\)
\(\Rightarrow M=30+5^3\left(1+5\right)+....+5^{99}\left(1+5\right)+5^{101}\)
\(\Rightarrow M=30+6.5^3+...+6.5^{99}+5^{101}\) có tận cùng bằng 5
⇒c=5
Mà \(\overline{abcd}⋮25\Rightarrow\overline{cd}⋮25\Rightarrow\overline{5d}⋮25\Rightarrow d=0\)
Lại có:
\(\overline{ab}=a+b^2\Rightarrow10a+b=a+b^2\)
\(\Rightarrow10a-a=b^2-b\Rightarrow9a=b\left(b-1\right)\)
\(\Rightarrow b\left(b-1\right)⋮9\)
\(\Rightarrow\left[{}\begin{matrix}b⋮9\\\left(b-1\right)⋮9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}b=9\\\varnothing\end{matrix}\right.\)
\(\Rightarrow9a=9.8=72\Rightarrow a=8\)
Vậy \(\overline{abcd}=8950\)