Cho x,y thỏa mãn: x^3 - x^2 + x - 5 và y^3 - 2y^2 + 2y +4. Tính tổng x + y
Cho x,y là các số thực thỏa mãn x+y=1. Tính \(A=x^4+y^4-2x^3-2x^2y^2+x^2-2y^3+y^2\)
\(A=x^4+y^4-2x^3-2x^2y^2+x^2-2y^3+y^2\)
\(A=\left(x^4-2x^2y^2+y^4\right)-2\left(x^3+y^3\right)+\left(x^2+y^2\right)\)
\(A=\left(x^2-y^2\right)^2-2\left(x^3+y^3\right)+\left(x^2+y^2\right)\)
\(A=\left[\left(x-y\right)\left(x+y\right)\right]^2-2\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x^2+y^2\right)\)
\(A=\left(x-y\right)^2-2\left(x^2-xy+y^2\right)+\left(x^2+y^2\right)\)
\(A=x^2-2xy+y^2-2x^2+2xy-2y^2+x^2+y^2\)
\(A=0\)
giai giup mk vs
cho hai số x,y thỏa mãn đồng thời \(x^3-x^2+x-5=0\) và \(y^3-2y^2+2y+4=0\)
tính tổng \(x+y\)
Xét \(x^3-x^2+x-5=0\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)^3+\frac{2}{3}\left(x-\frac{1}{3}\right)=\frac{128}{27}\)
Xét \(y^3-2y^2+2y+4=0\)
\(\Leftrightarrow\left(y-\frac{2}{3}\right)^3+\frac{2}{3}\left(y-\frac{2}{3}\right)=-\frac{128}{27}\)
Cộng theo vế 2 dòng có dấu <=> ta có:
\(\left(x-\frac{1}{3}\right)^3+\left(y-\frac{2}{3}\right)^3+\frac{2}{3}\left(x-\frac{1}{3}+y-\frac{2}{3}\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{3}+y-\frac{2}{3}\right)\left(\left(x-\frac{1}{3}\right)^2+\left(x-\frac{1}{3}\right)\left(y-\frac{2}{3}\right)+\left(y-\frac{2}{3}\right)^2\right)+\frac{2}{3}\left(x+y-1\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(\left(x-\frac{1}{3}\right)^2+\left(x-\frac{1}{3}\right)\left(y-\frac{2}{3}\right)+\left(y-\frac{2}{3}\right)^2\right)+\frac{2}{3}\left(x+y-1\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(\left(x-\frac{1}{3}\right)^2+\left(x-\frac{1}{3}\right)\left(y-\frac{2}{3}\right)+\left(y-\frac{2}{3}\right)^2+\frac{2}{3}\right)=0\)
Dễ thấy: \(\left(x-\frac{1}{3}\right)^2+\left(x-\frac{1}{3}\right)\left(y-\frac{2}{3}\right)+\left(y-\frac{2}{3}\right)^2+\frac{2}{3}>0\)
\(\Rightarrow x+y-1=0\Rightarrow x+y=1\)
Done !!!
Bài 1; CHo x;y thỏa mãn x^3 -x^2 + x - 5 = 0 và y^3 - 2*y^2 + 2y + 4 = 0:
Tính tổng S=x+y
GIÚP MÌNH VƠI CÁC BẠN ƠI MÌNH ĐANG CẦN MÌNH CẢM ƠN BẠN TRƯỚC !
Câu 1: tìm giá trị nhỏ nhất của biểu thức P=\(\frac{2x-1}{x^2+2}\)
Câu 2: Cho x;y thỏa mãn \(x^3-x^2+x-5=0\)và \(y^3-2y^2+2y-4=0\)
Tính tổng S= x+y
cho x,y thỏa mãn x3-x2-5=0 và y3-2y2+2y+4=0
tính tổng S=x+y
giúp mình với bài này lam kiểu gì vậy?
đúng thì mình tick!
tính giá trị của biểu thức
A=x-y/x+y biết x,y khác 0 và thỏa mạn điều kiện (x-y)(x-2y)=0
B=x/y biết x,y khác 0 và thỏa mạn điều kiện x+y/x-y=3/2
C=x/y biết x,y khác 0 và thỏa mãn điều kiện x+2y/x-y=3/5
Tìm các số thực x,y,z thỏa mãn x/2=y/3,y/5=z/4 và x+2y+3z=76
Cho x;y;z thỏa mãn (x-1)/2=(y-2)/3=(z-3)/4 và x-2y+3z=14. Khi đó x+y+z=?
(x - 1)/2 = (y - 2)/3 = (z - 3)/4
=> (x - 1)/2 = 2(y - 2)/6 = 3(z - 3)/12 = [(x - 1) - 2(y - 2) + 3(z - 3)]/(2 - 6 + 12) = [(x - 2y + 3z) - 6]/8
Vì x - 2y + 3z = 14
=> (x - 1)/2 = (y - 2)/3 = (z - 3)/4 = (14 - 6)/8 = 1
=> x = 3, y = 5, z = 7
Vay khi : x+y+z=3+5+7=15
Cho x, y, z thỏa mãn: x/2= 2y/3= 3z/4 và x-y=15. Khi đó x+y+z=?