Những câu hỏi liên quan
Ngô Bảo Châu
Xem chi tiết
Trần Kim Anh
21 tháng 5 2019 lúc 15:29

A=\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}+\left(\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}+\frac{a}{a+b}\right)\)\(\ge4\)

B=\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}+\left(\frac{c}{b+c}+\frac{d}{c+b}+\frac{a}{d+a}+\frac{b}{a+b}\right)\)\(\ge4\)

A+B=2M+2\(\ge\)8 (M là biểu thức cần chứng minh)

M\(\ge\)2 <=>a=b=c=d

FAH_buồn
21 tháng 5 2019 lúc 15:31

Ta có 

           \(\frac{a}{b+c}\ge\frac{a+a+d}{a+b+c+d}\)

           \(\frac{b}{c+d}\ge\frac{b+b+a}{a+b+c+d}\)

           \(\frac{c}{d+a}\ge\frac{c+c+b}{a+b+c+d}\)

           \(\frac{d}{a+b}\ge\frac{d+d+c}{a+b+c+d}\)

=> \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)>  \(\frac{a+a+d+b+b+a+c+c+b+d+d+c}{a+b+c+d}\)=\(\frac{2a+2b+2c+2d}{a+b+c+d}\)= 2

Chúc bạn học tốt!

TRẦN ĐỨC VINH
21 tháng 5 2019 lúc 17:08

phân số bé hơn 1 ,khi công  vào tử và mâu cùng một số thì được phân sô lớn hơn phân số ban đâu .Còn phân sô lớn hơn một thì ngược

lại Bạn chú y nha.

huongkarry
Xem chi tiết
Phan Nghĩa
20 tháng 7 2020 lúc 19:55

đây là dạng mở rộng của nesbit 

Áp dụng bất đẳng thức Bunhiacopski :

\(\left[a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\right].F\ge\left(a+b+c+d\right)^2\)

Tương đương  \(F\ge\frac{\left(a+b+c+d\right)^2}{a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)}\)

Ta có : \(\left(a+b+c+d\right)^2\ge4\left(a+d\right)\left(b+c\right)\)

\(\left(a+b+c+d\right)^2\ge4\left(a+b\right)\left(c+d\right)\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(2\left(a+b+c+d\right)^2\ge4\left[a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\right]\)

Suy ra \(\frac{\left(a+b+c+d\right)^2}{a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)}\ge\frac{4}{2}=2\)

Vậy ta có điều phải chứng minh 

Khách vãng lai đã xóa
Dương Hoàng
20 tháng 7 2020 lúc 20:04

bạn @dcv thêm phần dấu "=" xảy ra \(\Leftrightarrow a=c;b=d\)

Khách vãng lai đã xóa
Trần Minh Đức
Xem chi tiết
Tu Nguyen Vuong
11 tháng 5 2017 lúc 18:54

Ta có : (a+b)/(a+b+c)<(a+b)/(a+b+c+d) ; (b+c)/(b+c+d)<(b+c)/(a+b+c+d) ; (c+d)/(c+d+a)>(c+d)(a+b+c+d) ; (a+d)/(a+b+d)>(a+d)(a+b+c+d)

Cộng 4 bất đẳng thức trên rồi rút gọn vế phải sẽ ra kết quả như đề bài

Trên trường tui không nghĩ ra về nhà mới phát hiên ra được

thien ty tfboys
11 tháng 5 2017 lúc 19:38

Cho mk hỏi bạn TMDuc va TNVuong thi cùng trường à. Sao lại có bài chung thế.

Uchiha Itachi
Xem chi tiết
Đỗ Đạt
1 tháng 9 2016 lúc 22:40

 đặt   P=a/(b+c)+b/(c+d)+c/(d+a)+d/(a+b)

        Q=b/(b+c)+c/(c+d)+d/(d+a)+a/(a+b)

        R=c/(b+c)+d/(c+d)+a/(d+a)+b/(a+b)

        thì Q+R=4

        Ta có: P+Q=(a+b)/(b+c)+(b+c)/(c+d)+(c+d)/(d+a)+(d+a)/(a+b)≥4

          => P+R≥4

         Cộng 2 bđt trên ta được: 2P+Q+R≥8 hay P≥2

Lực Nguyễn hữu
Xem chi tiết
kagamine rin len
26 tháng 6 2016 lúc 14:34

3a) ta có \(\frac{a^2}{a+b}=a-\frac{ab}{a+b}>=a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)

vì \(a,b>0,a+b>=2\sqrt{ab}nên\frac{ab}{a+b}< =\frac{ab}{2\sqrt{ab}}\)

tương tự \(\frac{b^2}{b+c}=b-\frac{bc}{b+c}>=b-\frac{bc}{2\sqrt{bc}}=b-\frac{\sqrt{bc}}{2}\)

tương tự \(\frac{c^2}{c+a}=c-\frac{ca}{c+a}>=c-\frac{ca}{2\sqrt{ca}}=c-\frac{\sqrt{ca}}{2}\)

cộng từng vế BĐT ta được \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ca}}{2}=\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}\left(1\right)\)

giả sử \(\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}>=\frac{a+b+c}{2}\)

<=> \(2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=a+b+c\)

<=> \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=0\)

<=> \(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}>=0\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)

(đúng với mọi a,b,c >0) (2)

(1),(2)=> \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=\frac{a+b+c}{2}\left(đpcm\right)\)

Phan Mạnh Tuấn
Xem chi tiết
Thắng Nguyễn
22 tháng 11 2016 lúc 23:34

Xét BĐT phụ  \(\frac{a^3}{a^2+b^2}\ge\frac{2a-b}{2}\)\(\Leftrightarrow b\left(a-b\right)^2\ge0\)

Tương tự ta có:

\(\frac{b^3}{b^2+c^2}\ge\frac{2b-c}{2};\frac{c^3}{c^2+d^2}\ge\frac{2c-d}{2};\frac{d^3}{d^2+a^2}\ge\frac{2d-a}{2}\)

Cộng lại theo vế ta có:

\(VT\ge\frac{2a-b}{2}+\frac{2b-c}{2}+\frac{2c-d}{2}+\frac{2d-a}{2}\)

\(=\frac{2a-b+2b-c+2c-d+2d-a}{2}=\frac{a+b+c+d}{2}\)

Vậy BĐT đc chứng minh

Nguyễn Đa Vít
Xem chi tiết
Fire Sky
3 tháng 4 2019 lúc 20:53

Để \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)

\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)

\(\Leftrightarrow\frac{a-b}{b+c}+1+\frac{b-c}{c+d}+1+\frac{c-d}{d+a}+1+\frac{d-a}{a+b}+1\ge4\)

\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)

\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(Cần phải chứng minh)

Ta có : \(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+c\right).\frac{4}{a+b+c+d}\left(1\right)\)(Áp dụng BĐT Cô-si)

\(\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\left(b+d\right).\frac{4}{a+b+c+d}\left(2\right)\)(Áp dụng BĐT Cô-si)

Từ (1) và (2) \(\Rightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)

\(\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=4\)(Điều phải chứng minh)

Nguyễn Đa Vít
7 tháng 4 2019 lúc 15:52

Thank bạn Fire Sky very much ☺☺🙂☺☺!!

Minamino Reika
Xem chi tiết
Nguyễn Huy Tú
5 tháng 11 2016 lúc 21:23

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:
\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2.k^2+d^2.k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (2)

Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

Phạm Đức Nam Phương
Xem chi tiết